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I. Introduction

Most of the research done during the contract period is reported in the “Interim Report” of
March, 2002. This is included in section II. Other results, including a breakthrough that has
lead to a new, simpler, fully conservative Vorticity Confinement formulation will be discussed
in section III. Results of the original formulation for blunt body flow, including comparisons
with experiment, are described in section IV. A new, more effective way to treat the surface
boundary layer that can be compared with other Vorticity Confinement separation results,
such as dynamic stall, is presented in section V. A few of the publications produced during
the contract period, which contain relevant material refered to in this report, are included
as appendices.

I1. Interim Report, March 25, 2002

I1.1 Introduction to Interim Report

Thin, fixed or deformable lifting surfaces are very important components of many Army
aerodynamic vehicles and devices. These include rotorcraft blades, tail fins, lifting devices
attached to them such as leading edge and trailing edge flaps and landing devices such as
parachutes, to name a few. It is well known that the development and incorporation of
any aerodynamic technology such as described above requires a large number of accurate
simulations to be performed. Due to the high Reynolds number, complex geometry and
aeroelastic effects, wind tunnel testing is very expensive, for these cases limited to only
a small number of tests, and in some cases, not feasible in current facilities at full scale.
Hence, it is necessary that computational simulations be done. These must be efficient,
requiring short set-up and computing times if they are to be effective in the engineering
design process. Unfortunately, conventional computational methods fall far short of this
requirement for these flows: Conventional grid-based Euler or viscous (“Navier Stokes”)
turbulent modeling methods require surface fitted or adaptive grids which often must be
very fine near the surface, and require far too much computing and set-up time to be useful
for routine engineering/design applications. This problem is even more serious when the
surface is deforming so that grid must be continually regenerated. Further, conventional grid
based methods also cannot feasibly be used when convecting vortical effects are important
because of numerical dissipation. Finally, integral methods such as panel methods, while
being efficient, cannot treat general separating cases with associated vortical effects.

Over the past several years we have developed a method that alleviates all of the above
problems, but for blunt body flows =), This method allows the rapid, simple treatment of
complex geometries, including modeling of the relevant effects of turbulent boundary layers,
and general separation, as well as the computation of convecting, thin vortical regions, with
no numerical diffusion. The method is based on our Vorticity Confinement computational
technique. It utilizes uniform Cartesian grids with “immersed boundaries” for the blunt
body surfaces as well as for the convecting vortices. The basic technique is described in
Refs. (1-6).




The reason that this original method is not currently used for thin surfaces is that it
requires that there be “ghost” points in the body to extrapolate the external flow variables.
This poses no problem for the intended (large class of) blunt body flows where at least
several grid points can be included across the body, i.e., the body must be at least several
grid cells thick. This method has been validated for a number of cases (1-6) and shown to
be accurate for these flows.

Currently, an extension of the method is being implemented which results in more ac-
curate inviscid computations for attached flow regions (second order instead of first) and
utilizes a separate boundary layer integral computation on the surfaces. This new extension
results in simpler turbulent boundary layer modeling than the original Confinement method,
since it utilizes a lower dimensional (surface) grid. For example, in 3-D it can use 2-D surface
points, which can be dense, rather than the coarser 3-D flow grid points near the surface.
This new technique is described below in Sec. IL.2. The current version also uses points in-
side the body and hence has the same limitation to thick, blunt bodies as the basic, original
Vorticity Confinement method. However, since it involves solving boundary layer equations
directly on the surface and coupling them to an outer inviscid solution on a fixed, uniform
grid, it can be extended to treat thin, embedded surfaces.

I1.2 Development of Simple Boundary Layer Model Including Sep-
aration Using Surface Coordinates

During the performance of our current ARO contract involving blunt bodies: “Computa-
tion of Separating High Reynolds Number Incompressible Flows Using Uniform Cartesian
Grids”, a new extension was discovered that leads to far more efficient computation of sep-
arating flows, with far greater control over the boundary layer dynamics than our original
Vorticity: Confinement based method. This method is termed “Surface Boundary Layer
Model” (SBLM). Further, in addition to Cartesian grids, the new SBLM method can be
implemented in existing, conventional inviscid codes which utilize body conforming grids,
giving them the ability to model boundary layer effects leading to blunt body separation
from smooth surfaces, with essentially no increase in computational requirements.

11.2.1 Rationale for SBLM

The aerodynamic forces on surfaces of blunt bodies are determined, to a large extent, by
the zone of separation. This, in turn, depends on the dynamics of the boundary layer (BL),
which is turbulent for most flows of interest. The detailed dynamics can be solved, without
averaging, by direct Navier Stokes simulation (“DNS”), but only for very small regions of
the BL at realistic Reynolds numbers. Thus, for general flows, the detailed dynamics cannot
be feasibly computed and must be modeled in terms of some averaged variables. Our general
approach is to treat the spatial resolution of the BL in a way that is consistent with the
temporal resolution: Since the BL flow variables are treated as averaged over short periods
of time, as in typical “Reynolds Averaged Navier Stokes” (RANS) treatments, we maintain
that a simple, consistent model should involve flow variables that are also averaged over
small regions of space. Since the time averaged flow (when attached) is smooth along the
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surface, the averaging is most important normal to the surface - through the BL. This
amounts to using variables that represent BL quantities integrated normally through the
BL, such as a (small number of) moments. This is very different from the common RANS
approach of trying to solve for the spatial details (in the normal direction) without spatial
averaging of some time-averaged profile within the BL, which requires very fine grids which
are body conforming. Our treatment is consistent with the dominance of large scale coherent
structures in the BL for which the temporal fluctuations are comparable to the spatial, which
are, in turn, comparable to the BL thickness(.

One method for constructing such a crude, averaged BL treatment with a minimal number
of variables is to use the original Vorticity Confinement method(*~®. This results in thin
vortical BL regions spread over ~ 2 grid cells normal to the surface, which essentially have
only a few degrees of freedom.

I1.2.2 Surface Boundary Layer Model (SBLM)

The subject of this proposal is the development of a BL model that can treat thin lifting
surfaces less than one grid cell thick. Since our original BL scheme requires grid points inside
the boundary (on which velocity is set to zero), this was not possible. The new method,
however, is far simpler than the original Vorticity Confinement-based scheme, and much
more amenable to analysis and as stated, can be extended to thin surfaces extension. In
addition, it does not have the problems of loss of resolution due to the ~ 2 cell BL thickness
of the original method which would increase the thickness of a thin surface by up to 4 cells.
As a result, since it has no displacement thickness errors, the new method can even treat
small features that have essentially zero thickness. In addition, the method can still be used
with thick, blunt bodies.

The main idea is to combine a new, simple inviscid immersed boundary treatment with
a BL model that “lives” on the surface. The inviscid solution, which is smooth, is developed
on the uniform Cartesian grid outside the surface. The pressure from this solution is extrap-
olated onto the separate surface grid nodes using a special inviscid flow model. Then, a lower
dimensional partial differential equation is solved on the surface for the (model) tangential
velocities which represent the integral in the normal direction of the time averaged BL veloc-
ities. The tangential gradient of the computed surface tangential velocities is then used to
compute a normal velocity at the outer edge of the boundary layer, through the continuity
equation. In an adverse pressure gradient, the divergence of the tangential gradient of this
tangential velocity leads to a sudden increase in normal BL velocity (BL “eruption”), which
initiates separation.

Although it may seem that this new method requires additional data (a surface grid)
compared to the original Vorticity Confinement-based BL method, which only utilized the
uniform Cartesian grid, this is not true: the original surface description in all of our appli-
cations involves a set of surface nodes (usually surface triangles), which are used to compute
a level set “distance” function on each Cartesian grid node. This function then defines the
surface. Thus, this surface grid structure is already required; we are now going to have a
second use for it in the new BL method.

The new BL method is explicitly consistent with the scenario that the physical BL is




very thin before separation and does not affect the outer, inviscid flow, as it evolves along
the surface, driven by the pressure gradient of the outer flow and surface friction, and that,
when it “erupts”, it initiates separation in the outer flow.

First, the inviscid solution method will be described, then the surface BL model. It will
be seen that not only is the BL modeled, but, for the inviscid solution, the near (sub-grid
scale) region just exterior to the surface is also modeled.

I1.2.2.1 Near-Surface Inviscid Solution Method

As in our original method, we still discretize and solve the continuity and momentum
equations with Vorticity Confinement terms on a uniform Cartesian grid~%). The main
difference is that the velocity on the grid nodes near the surface (within one cell) are deter-
mined differently: The tangential velocity is determined by Surface Vorticity Confinement,
which effectively enforces zero vorticity in the grid cells exterior to the surface region. The
inviscid near-surface “model” referred to above then specifies the normal velocity at ‘nodes
in the near-region (see Fig. 1).

Even though the BL does not result from a balance of diffusion and confinement, as
it did in the original Confinement based method, Vorticity Confinement is still vital here:
Numerical errors normally create vorticity which, without Confinement, will diffuse and
convect away from the boundary region, contaminating the outer flow field with large errors:
Confinement prevents this by convecting erroneous vorticity back into the boundary surface,
and results in a well-defined outer inviscid flow.
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Figure 1: Computational Method




The near-surface inviscid model specifies that Vg, is independent of normal distance,
n, in the near boundary region, where V; is the derivative along the surface (in our initial
work, we approximate the surface as a flat plate). This inviscid model is reasonable because
the outer vorticity is zero before separation, implying

Bn(js - stn =0

where the normal velocity, g, is zero on the boundary, and its n derivative varies smoothly
along the surface. Thus g, is O(h) (grid cell size) except at separation. Accordingly, dn; is
O(h) and §, only varies by O(h) in the near surface “inner” modeled region, of thickness h.
Then, V, - §; can be taken to be independent of n to O(h). At a point n above the surface
(n ~ O(h)), then, we can model ¢, by integrating

Ongn = —Vs - s
This gives
n =~ —n(vs : qjs)ln:O + qz,
where ¢’ represents the effect of the boundary layer model, and is described in Sec. 11.2.2.2.
The value of g, is enforced at nodes just outside the surface (see Fig. 1).
Results of an inviscid computation (without, of course, separation) of a vortex in a
straight channel (not aligned with the grid) using the new method are presented in Fig. 2.
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Figure 2: Velocity vector of an inviscid computation of a vortex in a straight channel

There are many opportunities to include effects such as surface curvature here, as well as
other near surface inviscid models. For example, for long, thin lifting surfaces, a lifting-line
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model for main and tail rotor blades with sub-grid scale chord was recently implemented
as a “near surface inviscid model” for a project for United Technology Research Corp.(®.
There, only a uniform Cartesian grid was used which the lifting lines moved through. This
project resulted in a code able to predict flow over an entire rotorcraft including fuselage,
empennage including tail and, as described, main and tail rotors. Here, the rotor “surface”
was a blade with chord assumed so small that it was less than a grid cell and, as a result, the
blade could be approximated by a vortex filament with specified motion. (This project really
was a preliminary, simplified application of the inviscid part of the model to thin surfaces).

11.2.2.2 Boundary Layer Model

The new BL model is effected directly on nodes on the surface. This model is easy to
analyze and modify with additional terms since it exists on a lower dimensional surface and
is driven by a pressure field extrapolated from a smooth, exterior inviscid solution. The

equations to be solved along the surface are:

ot =~ - Vat - Vs(o°/p) + [ (1)
where @ is the model tangential velocity for the boundary layer: it is single valued at
each point and represents a model for the velocity averaged through the layer in the normal
direction as well as averaged in time. Also, V,(p/p) is the tangential derivative of the
inviscid, near surface outer pressure field extrapolated to the surface, divided by the density,
p. The surface effect, f:, can be represented by a number of forms. This is essentially
our “turbulent boundary layer model”. Without it, there is no separation and the surface
velocity equals the near-surface inviscid velocity. A simple, single parameter “drag” model
that we are using initially is .
f s = _ﬂ"jg
This is one of the simplest possible forms and is an obvious first choice. This model was
studied for flow over a 2-D cylinder induced by a pair of convecting vortices as they ap-
proached a cylinder("’). There, it was shown to lead to a singularity in V @2~ This is expected
since eqn. (1) is just Burger’s equation with an imposed forcing function and it is known(®)
that, in 1-D,

asq:——)—t —t
c

for t., c constants. That is, the gradient diverges at a particular position and time.

The last part of the BL model simulates the effect of incompressibility. It represents, in a
simple way, what happens in more detailed computations of a separating boundary layer(1?);
when the tangential gradient of the tangential velocity diverges, the gradient of the normal
velocity diverges, since incompressibility implies

anq1bl =-V;- qz

Taking ® to be a mean velocity through the BL with assumed thickness § < h, with g, =0
at the surface, this results in




or
qz = _évs - qg

This normal velocity is added to the model normal velocity on the outer grid nodes for the
inviscid near-boundary solution described above in Sec. 11.2.2.1.

During most of the time ¢% will be small and have little effect, since V - @ is O(1) and
§ is small. However, when the gradient diverges ¢% will become large and result in a large
¢® and, hence, a BL eruption. While the detailed BL computation of Ref. (10) had to be
stopped at this point because it did not treat the outer flow, ours can continue. Preliminary
results of such an eruption (prescribed ¢%) have shown that it leads to separating vortices(®).

I1.2.3 Current Work

During this final phase of our current ARO project, we are solving vortex-induced separation
in 2-D, and 3-D flows over circular cylinder, ellipsoid and sphere, with different grid sizes,
in order to calibrate the BL model and determine the best values for the coefficients y and
& and whether other terms (such as tangential derivatives or surface curvature dependence)
are necessary, or whether 4 and & should, themselves, be solutions to a surface-transport
equation.

Fig. 3 show the comparison of flow over cylinder with exact solution. Turbulent boundary
layer effects can be modeled as shown in Fig. 4. Fig. 5 and Fig. 6 show the velocity vector
of the inviscid flow over an ellipsoid and a sphere respectively.
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Figure 3: Comparison of Velocity Vector of Flow over Cylinder
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Figure 5: Velocity Vector of Inviscid Flow over Ellipsoid
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Figure 6: Velocity Vector of Inviscid Flow over Sphere

I1.3 Development of Surface Boundary Layer Model for Thin Sur-
faces

As explained above, computation of flow over general, thin, fixed surfaces is currently not
feasible, with conventional methods, for rapid engineering computations: For general, sepa-
rating flow the very fine body fitted grids necessary for conventional viscous computations
cannot be feasibly generated because the surfaces generally are thin and, further, can move
in response to aerodynamic or actuator forces, requiring continual re-generation. Further,
current pde-based turbulent models are too expensive to routinely run for changing, com-
plex geometries. Our SBLM approach totally alleviates these problems while not requiring
any more turbulence modeling parameters than conventional pde-based turbulent modeling
schemes. This is because only a regular, coarse inviscid-size Cartesian grid, is used together
with a separate surface grid, on which a simplified turbulence model is solved, so that the
computation is very efficient.

As explained above, a first, simplified example of this approach has already been demon-
strated for United Technology Research Corp.® using a flexible lifting line model for the
rotor blades (both main and tail) together with table look-up, coupled to the main flow
field computation. Of course, the blades were not treated as surfaces and no boundary layer
model was employed.

A next step, suggested by Frank Caradonna, involved computing inviscid flow over a
zero thickness flat plate at different angles of attack in 2-D. Basically, this demonstrates the
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accuracy of the coupling of the near surface inviscid model to both the outer flow field and
the surface equation solver (see Fig. 1). Here, the surface equations only involved an inviscid
pressure computation and integration (to get the lift coefficient). Even though no turbulence
model was involved, the resolution requirements of this problem are very demanding since
the pressure is singular at the leading edge. Our surface grid approach allows us to resolve
this case since the surface grid can be far finer than the (higher dimensional) regular field
grid. As in the above lifting line approach, this study was really a preliminary test of the
concept of the work proposed here.

Besides demonstrating an important aspect of our approach, this case is extremely im-
portant for practical rotorcraft computations: even with fixed, non-deforming surfaces, there
are always important lifting surfaces such as tails that cannot be treated as lifting lines since,
unlike rotor blades, they have a small aspect ratio. On the other hand, they are too thin
for our original Vorticity Confinement treatment, which would require that the outer grid
be fine enough to have cells within the thickness of the surface, resulting in fine grids with
very large numbers of cells. This was adequate for our original blunt-body based surface
treatment but not for the present proposed project, and was the main drive for developing
the new, thin-surface method. Further, the assumption of zero thickness here forms a good
basis, since effects of finite, small thickness for thin lifting surfaces are usually small and, if
needed, are best treated as a perturbation of our simple, efficient method.

The basic idea for the flat plate is to use a closed-form solution in a uniform free stream
as a near-surface inviscid model. This is analogous to a Biot Savart model for the lifting
line model or the constant tangential velocity and linearly increasing normal velocity model
for the infinite flat surface described in Sec. I1.2. Thus, the lifting line corresponds to zero
chord, the short plate here to finite chord and the flat surface of Sec. I1.2 to infinite chord.

Basically, in all of the cases, near the surface the flow is assumed to be the sum of a local
uniform free stream (to be determined as part of the coupled computation) and a model
term. In all three cases, the main point is to extrapolate the outer velocity into the near-
surface region and compute an effective free stream velocity, and then to use this to both
get the effect of the surface on the outer flow, and the pressure on the surface. Once this
surface pressure is computed, our viscous model which computes separating flow, described
in Sec. 11.2, can be used.

For the flat plate, an exact, analytic solution®”) was used as the starting point. This
is shown in Fig. 7, where V is the (local) free stream velocity magnitude and o the angle
between local free stream and the flat plate. The equation shown gives the normal (g,) and
tangential (g;) velocities at a nearby point, P. During the overall computation, these values
are computed at (outer, Cartesian) grid points near the flat plate for cell nodes where the cell
intersects the plate. Conventional difference equations, together with Vorticity Confinement
are used elsewhere. Matching the solutions determines the local V' and 6. This is then used
in the equation of Fig. 7 to determine the velocity at points on the surface. The resulting
pressure is then computed and integrated to get Cj. For the computations, a 256 X 256,
uniform Cartesian outer grid was used and a 1000 uniform point surface grid. Computed
C, values on the surface for angles of attack (a) of 1°, 5° and 10° are presented in Fig. 8.
They are exact since the closed form solution was used and the iterated coupling technique
determined the correct local free-stream flow (the local flow near the surface, here denoted
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“free stream” is, of course, not input to the model but must be determined since, in general,
it is not known but is part of the flow computation). As a final test, the computed surface
pressure was numerically integrated to get C; as a function of o. This is plotted in Fig. 9. It
can be seen that it is very close to the theoretical 27« line. This agreement is very significant
and represents a breakthrough because of the singular nature of the pressure. It should be
mentioned that this solution is only meant to be a demonstration of the matching technique.
The use of this analytic closed form local 2-D solution, as above, should be useful for long
thin rotor blades, including surface effects: It will be a great improvement over lifting line
schemes, while being just as fast. The actual analytic form will not be used for short aspect
ratio surfaces such as fins. These will be treated by the flat-surface technique described
above (for channel flow).

Flat Plate

A

6= (el 93/2
R=(R/R)"

gs=VRsinasin@+V cosa
q,=VRsinacosf

Figure 7: Velocity Formula for Flat Plate

III. New Vorticity Confinement Formulation

In spring, 2002, we discovered a radically different Vorticity Confinement formulation. This
new formulation is completely conservative. The original formulation had (small) effects
due to non-conservation: There could be small deviations in the trajectory of vortices.
These could be corrected by adding terms to the original formulation to make it fully
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conservative(!2); but the result was somewhat complicated. The new form is not only sim-
pler, but is amenable to analysis. It can also be used directly for “scalar confinement”,
which is important for convection of passive scalars. The reason for the simplicity is that
it only involves a simple difference formulation with no extra logic: A gradient of vorticity
magnitude with upwind bias was required in the original form.

A detailed rationale is given in Sec.1 of Ref.(13), included as Appendix I. Results for
both convecting scalars and vortices in 2-D incompressible flow are given in Sec.2 of that
paper.

For concentrated, convecting passive scalars, a new result is proven - a type of “Ehrenfest
Theorem” which shows that the centroid of the scalar feature convects with the mean velocity,
defined as an average velocity over the feature weighted by the amplitude of the scalar.
Additional discussions are presented in Sections 1.5 and 1.6 of Ref.(14), included as Appendix
I1.

IV. Validation Studies - Original Vorticity Confinement

Three computations have recently been done to validate the original Vorticity Confinement
method for realistic 3-D flows.

IV.i

The first involves flow over a rotorcraft landing ship. There, the vortex created at the
leading edge corner of the deck in a even moderate cross-wind can convect over the deck,
remaining strong and concentrated. This creates hazards for the landing rotorcraft. Results
are presented in Ref.(15) and Ref.(16) (included as Appendix III).

In section 3.2 of the latter, it can be seen, first, that Vorticity Confinement was necessary
even to get reasonable results, with the computational grid used. Second, it can be seen that
the vortex position and induced velocity are very close to that measured experimentally.

IvV.2

Two canonical 3-D turbulent blunt body flows were computed and compared with exper-
iment. These involved flow over a circular cylinder at a Reynolds number of 3,900 and
a square cylinder at a Reynolds number of 21,400. Results of the first were presented in
Ref. (15) and Ref. (14) (included as Appendix III). The square cylinder results were also
presented in the latter.

The main goal of this study was to investigate the promise of Vorticity Confinement as a
way to effectively and economically model the small scale vortices in a turbulent wake flow.
This was a very different case than previous trials which involved isolated, concentrated
vortices and surface shear layers, since a large range of scales was involved. This study,
then, evaluated Vorticity Confinement as a very simple, effective alternative Large Eddy

({92

Simulation (LES) method. Only a simple parameter, the confinement multiplier, “¢” was
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used to model Reynolds number effect, which was held constant throughout the field. As ¢
was increased, the small scales and velocity fluctuations became more energetic.

In Sec. 3 of Ref. (16) (Appendix III), the changes in the rms fluctuating velocity profiles
can be seen as € is varied. For both circular and square cylinders, a value of € was easily found
such that both mean and rms velocity profiles matched experiment extremely closely. We are
currently searching for measurements at other Reynolds numbers to calibrate €. It surprised
us that only the single confinement term, with one parameter seemed to serve as an effective
LES model. We believe that our ability to capture small scale vorticies over only ~ 2 grid
cells gave us a large enough range of scales, even on the moderate grid used, to accurately
capture the larger scale turbulent dynamics. This is possible because we use an inherently
discrete, nonlinear model directly on the grid. This is very different from conventional LES
schemes which attempt to model the small scale structures with model partial differential
equation (pde) terms. These pde’s must then be resolved by finite different schemes, which
require many more grid points.

V. Extended Surface Boundary Layer Treatment

V.1

The main part of the current project involved developing a computational method for blunt
bodies in incompressible flow where the body could be simply represented by surface coor-
dinates and “immersed” in a uniform, coarse Cartesian grid.

The first part involved the outer, inviscid flow. This was accomplished in a simple way
using a level set description of the surface, and Vorticity Confinement to remove interpolation
errors (which show up as numerical vorticity) in the region near the surface. The new
feature here is that an inviscid “model” was used near the surface eliminating the first
order numerical boundary layer created with the original method, resulting in a much more
accurate solution.

The second part of the project involved viscous separation. This was readily treated in
an approximate way by the original Vorticity Confinement method with no-slip boundary
conditions at the surface. To increase the accuracy and allow additional terms to be added to
create an effective turbulent boundary layer model that could be easily calibrated a “Surface
Boundary Layer Model” (SBLM) was developed that was matched to the new inviscid near-
surface “inviscid model” and did not depend on the orientation of the surface with respect
to the main Cartesian grid. This allowed the modeling of the boundary layer separation
in a grid-independent way. Preliminary results using a single surface velocity equation are
reported in Sec. II. )

Frank Caradonna (17) brought up the point that good results have been obtained for
surface separation using Vorticity Confinement in this case for dynamic stall1® - a difficult
problem. This study used a body fitted grid where the boundary layer was confined by
the Vorticity Confinement to ~ 2 cells near the surface - effectively forming an SBLM. Due
to the body conforming grid there it was, of course, independent of surfce orientation. He
suggested trying to use such an approach (only very near the surface), since it had been
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shown to be effective.
For this reason, we recently have implemented this approach. Even though it uses a

“body fitted grid”, this is trivial to create since it is confined to the near surface region and
only requires extending the surface defining coordinates by a small amount. The solution
on this grid is then matched to our “outer” inviscid solver. We are finding that this method
is much less sensitive than our original, “single surface variable” method, though it still
is, effectively, a surface method, but with 2-3D velocity variables (grid planes). It allows
independent verification/testing of the surface model, include post-separation. It also allows
contact with body-fitted dynamic stall work.

Initial results (using a much finer near-body grid than necessary) for a circular cylinder
are presented in Fig. 10 and 11 for the flow on the inner planes. Note that just the first
2-3 planes take part in initial separation - this is the “Extended” SBLM. The full outer grid
flow resulting from the separation is shown in Fig. 12. The diameter of the circular cylinder
was 16 unit grid cells. The outer grid has 128 x 128 unit grid cells and the inner grid has
20(radius) x 50(circumferential) grid cells (with the cell size dr = 0.1 and df = 27 /50).
The time step for outer and inner region are 0.2 and 0.02 respectively. Results shown was
after 100 time steps. p for the outer and inner region are 0.75 and 0.05 respectively and e
for the outer and inner region are 1.125 and 0 respectively.

10}

Figure 10: Velocity Vector of the Inner Region for Flow Over Circular Cylinder (without
interaction with outer region)
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Figure 11: Velocity Vector of the Inner Region for Flow Over Circular Cylinder
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Figure 12: Velocity Vector for the Flow Over Circular Cylinder
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V.2 Conclusion of Section

An extended SBLM approach was shown to be effective. Now, additional model terms can
be added in a robust - grid independent way - while still immersing the surface in a simple,
uniform Cartesian grid. Additional, more complex configurations, including a 3-D prolate
ellipsoid are being studied.
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Abstract

A new computational method is described that efficiently treats thin features in
multi-dimensional incompressible fluid flow, such as vortices and streams of passive
scalars, and convects them over long distances with no spreading due to numerical errors.
Outside the feature, where the flow is irrotational or the scalar vanishes, conventional
discretized finite difference fluid dynamic equations are solved. The feature is treated as a
type of weak solution and, within the feature, a nonlinear difference equation, as opposed
to finite difference equation, is solved that does not necessarily represent a Taylor
expansion discretization of a simple partial differential equation (pde). The approach is
similar to shock capturing, where conservation laws are satisfied, so that integral
quantities such as total amplitude and centroid motion are accurately computed for the
feature. A more general approach is needed, however, than for conventional shock
capturing, which are basically 1-D phenomena. Basically, we treat the features as multi-
dimensional nonlinear discrete solitary waves that live on the computational lattice.
These obey a “confinement ” relation that is a rational generalization to multiple
dimensions of 1-D discontinuity capturing schemes.

We have already been working for several years with a method — “Vorticity
Confinement” that creates solitary waves on the lattice over only 2-3 grid cells and
efficiently solves these problems, and have generated a large number of results for basic
and complex, realistic flows. The main objective of this paper is to introduce a
completely new formulation, that, compared to the original formulation, is simpler,
allows more detailed analysis, and results in more compact structures for both vortices
and convecting scalars.

First, some practical motivations are described. Then, a short critique of
conventional methods for these problems is given. The basic new method is then
described. Some analysis of the new method and initial results are finally presented.
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1. Introduction

A new computational method is described that efficiently treats thin features in
multi-dimensional incompressible fluid flow, such as vortices and streams of passive
scalars, and convects them over long distances with no spreading due to numerical errors.
Outside the feature, where the flow is irrotational or the scalar vanishes, conventional
discretized finite difference fluid dynamic equations are solved. The feature is treated as a
type of weak solution and, within the feature, a nonlinear difference equation, as opposed
to finite difference equation, is solved that does not necessarily represent a Taylor
expansion discretization of a simple partial differential equation (pde). The approach is
similar to shock capturing [1], where conservation laws are satisfied, so that integral
quantities such as total amplitude and centroid motion are accurately computed for the
feature. A more general approach is needed, however, than for conventional shock
capturing, which are basically 1-D phenomena. Basically, we treat the features as multi-
‘dimensional nonlinear discrete solitary waves that live on the computational lattice.
These obey a “confinement ” relation that is a rational generalization to multiple
dimensions of 1-D discontinuity capturing schemes (this is elaborated on in the
Appendix).

Differences, compared to conventional shock capturing, are that:

First, unlike shocks, characteristics do not point into the feature, and extra terms
must be designed to prevent it from spreading due to numerical effects in the convection.
(Harten [2] developed such a scheme, but for contact discontinuities in 1-D compressible
flow.)

Second, shocks are basically one dimensional discontinuities, unlike vortex
filaments or thin streams of passive scalars, which are intrinsically multi-dimensional: A
concatenation of 1-D “capturing” operators along separate axes will not, generally, give
smooth solutions. Due to the multidimensional nature, it seems necessary to pay attention
to the structure within the feature, even though it is sampled on only a few grid cells in
the cross-section.

We have already been working for several years with a method — “Vorticity
Confinement” that efficiently creates solitary waves on the lattice and efficiently solves
these problems, and have generated a large number of results for basic and complex,
realistic flows [3-12]. The main objective of this paper is to introduce a completely new
formulation, that, compared to the original formulation, is simpler, allows more detailed
analysis, and results in more compact structures for both vortices and convecting scalars.

First, some practical motivations are described. Then, a short critique of
conventional methods for these problems is given. The basic new method is then
described. Some analysis of the new method and initial results are finally presented.

1.1 Motivation

There are many important fluid dynamic problems where thin, concentrated flow
features must be numerically convected over long distances. Examples include vortices
shed from forebodies and lifting surfaces of aircraft , rotorcraft and submarines, and thin
streams of contaminants convecting in ambient flow. Often, for these cases, the main




interest is the integrated amplitude through the feature and the motion of the centroid,
rather than the details of the internal structure. In general, these features can originate in
many places, reattach, merge, and have complex topology. Accordingly, we consider
Eulerian methods where very general topologies can be treated, as opposed to Lagrangian
“particle tracking” methods.

1.2 Current Methods

Conventional Eulerian approaches to the convection problem for incompressible
flow involve formulating governing pde’s, discretizing them and solving them as
accurately as possible on feasible computational grids, assuming only strong solutions.
For smooth, non-thin features, these methods are well known to converge to the correct
solution as the number of points across the feature in a typical direction, N, becomes
large: Error estimates are asymptotic in N. For accurate solutions, even higher order,
complex discretization methods typically require N to be at least ~8 or 10 so that the error
obeys the large N estimate. Even then, it is well known that solutions degrade over long
convection distances (many time steps). As a result, although conventional methods may
be efficient, for example, for low Reynolds number flow problems with large smooth
vortical regions, they are inefficient (or not even feasible) for thin aircraft trailing vortices
convecting over long distances.

It appears that adaptive, unstructured grids cannot improve the resolution
significantly for realistic problems with many thin features. Also, even for small numbers
of time dependent features these methods are very expensive, compared to uniform grid,
structured methods.

For these reasons, for the problems considered, it is important to have only very
few (2 or 3) grid points across each feature if it is very thin, and to convect it with no
numerical spreading. This small number of grid points is consistent with the stated desire
to only compute a few integral quantities across the feature, such as total amplitude and
centroid position. Then, the difference scheme can, effectively, serve as a simple,
implicit “solitary wave” model for the internal structure. However, as explained above,
this is not feasible with conventional pde-based methods. As an example of the
limitations of conventional methods, if we are limited to, say, a (128)° computation and
use a conventional method which requires ~8 cells to avoid excessive numerical
spreading, it may then be reasonable to say that the smallest “computational scale”, A, is
8/128 or 1/16, rather than the desired scale of ~ 2/128 or 1/64. Scales much smaller than
1/16 will be strongly damped and features will quickly spread due to numerical effects if
a pde is to be resolved. This difficulty shows up as a limit on the effective number of
degrees of freedom of the simulation, which is reduced by a factor of ~4°, if a
conventional method is compared to one with an actual 2 cell small scale resolution.

2. Vorticity Confinement Approach

As stated, over the last several years a new method was developed to treat
problems with thin, convecting vortices [3-12]. This method, termed “Vorticity




Confinement”, is intrinsically multidimensional and, although equally applicable to thin
vortices and (in modified form), thin streams of passive scalars, almost all of its uses
have involved vorticity. First (through Sec. 2.1), a section of ref. [3] (with some changes)
will be included that describes the basic features of Vorticity Confinement. Then, the new
formulation will be introduced, and new analyses and results involving the application of
the method to convecting vortices and scalars presented.

Vorticity Confinement is a method to preserve convecting, concentrated vorticity
on a coarse grid; the vortical structures can represent boundary layers over solid surfaces,
the smaller scales (of the order of a grid cell) in turbulent wakes, or separated, thin vortex
filaments that convect over arbitrarily long distances. Vorticity Confinement can be
implemented in a pre-existing flow solver, for both incompressible and compressible
flow, by adding a term to the discretized momentum conservation equations [4]. The
same basic approach, applied to convecting scalars, will also be described below.

For general unsteady incompressible flows, the governing equations with the
Vorticity Confinement term are discretizations of the continuity equation and the
momentum equations, with an added term:

V-§=0
2.0

0,§=—-(q-V)g —-I—Vp +h*[uV3G +e5]/ At
p

where § is the velocity vector, p is the pressure, p is the density, and p is a diffusion
coefficient that includes numerical effects (we assume physical diffusion is much
smaller), and the discretized grid cell size is 4 and time step, Az. For the last term, &5, €
is a numerical coefficient that, together with p, controls the size and time scales of the
convecting vortical regions or vortical boundary layers. For this reason, we refer to the
two terms in the brackets as “confinement terms™.

The basic idea is that we want the computed thin features to maintain shape and
total amplitude as their centroid is convected through the flow field. The requirement that
they relax to their shape in a small number of time steps and have a support of a small
number of grid cells determines the two parameters, € and p. Also, the “outer” flow
field in which the feature is convecting is slowly varying in time and space compared to
these scales (this is required if the grid cell size and time step are to resolve the pde’s
governing this outer flow). We then have a two-scale problem with the thin vortex or
scalar obeying a “fast” dynamics.

puvig+es ~0,

where § is defined below in Sec. 2.1.

Thin vortices are then convected through the flow field by the “slow” variables, g
(with the self-induced velocity, which does not affect the motion of the centroid of the
vortex, subtracted). Exactly the same type of discussion applies to the convection of a

passive scalars, as described below.
In general, for convecting vortex filaments, computed flow fields external to the

vortical regions are not sensitive to the parameters € and p overa wide range of values.




For example, the flow outside an axisymmetric 2-D vortex core is independent of the
vortical distribution, and hence does not depend on € and p as long as the core is thin.
Hence, the issues involved in setting them are similar to those involved in setting
numerical parameters in other standard computational fluid dynamics schemes, such as
artificial dissipation in many conventional compressible solvers. There, the flow outside
1-D captured shock regions does not depend on the exact internal structure, as long as it
is thin.

An important feature of the Vorticity Confinement method is that the
Confinement terms are non-zero only in the vortical regions, since both the diffusion term
and the anti-diffusion term vanish outside those regions (care has to be taken in the
numerical implementation to preserve this feature).

Another important feature concerns the total change induced by the confinement
correction in mass, vorticity and momentum, integrated over a cross section of a
convecting vortex. It can be shown [7-9] that mass is conserved because of the pressure
projection step in the solver and vorticity is explicitly conserved because of the vanishing
of the confinement term outside the vortical regions. For the original confinement
formulation used previously, momentum was almost exactly conserved. A previous
extension of the original method [5,10], explicitly conserved the momentum, but resulted
in a more spread vortex and implementation was somewhat complex. The new
formulation, described below, explicitly conserves momentum, is much simpler, and
results in more compact structures.

2.1 New Vorticity Confinement Formulation

First, the new formulation for scalar confinement will be given. Then, a velocity-
based (primitive variable) Vorticity Confinement term given that exactly reduces to the
new scalar confinement (in terms of vorticity) when the curl is taken. The scalar
formulation presented here is related to that presented in [11] in 1-D. In this section no
convection is used, only the two confinement terms, so that the behavior can be seen
more clearly. Excellent results are found with convection and will be shown in Sec. 3 for
vorticity as well as convecting scalars.

We start with an iteration for a non-negative scalar, ¢ :
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where the sum is over a set of grid nodes near and including the node where @ is
computed, the absolute value is taken and & , a small positive constant (~ 107*) is added
to prevent problems due to finite precision. The coefficients, C,, can depend on /, but
good results are obtained by simply setting them all to 1 (except for a convecting scalar,

as explained in Sec. 3.2. Eq. 2.1.2 is related to the harmonic mean [13].
For example, in 2-D, except for convecting scalars, the form used in this study is

41+l -1
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where the number of terms in the sum is N=9. Different values were used for convecting
scalars, as explained in Sec. 3.2.
Here, we assume ¢” >0. Negative values can also be accommodated with a

small extension. Both p and € are positive.

An important feature is that all terms are homogeneous of degree 1 in Eq. 2.1.1.
This is important because the confinement should not depend on the scale of the quantity
being confined. Another important feature is the nonlinearity. It is easy to show that a
linear combination of terms, for example of second and fourth order, cannot lead to a
stable confinement for any finite range of coefficients.

For smooth ¢ fields (long wavelengths), the last term represents a diffusion of

order n®/At, i.e., it is first order accurate if A¢ is proportional to A. If p <g, the total
diffusion (in the long wavelength limit) is negative. However, the iteration of Eq. 2.1.1 is
still stable and converges for values of & up to about 5 u. Also, the discrete, converged
solution as n — oo can be given exactly in terms of sech functions (to be described in the
next section).

The next step in our development involves letting ¢ be the magnitude of vorticity
and deriving an equation for the corresponding primitive variable velocity term that leads
to Eq. 2.1.1 when the curl is taken (exactly in 2-D, or for a straight vortex in 3-D). This
will result in a new formulation of Vorticity Confinement. In 3-D, if the curvature of a
vortex filament is large compared to its thickness, the results will still be approximately
valid since then the flow is close to that of a 2-D vortex in a plane normal to the filament.

We define

n+l I~ +uh2v2qn +8h23;n
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and the sum is the same as in Eq. 2.1.2.
We are currently implementing the new method in our general fluid dynamic

codes. In addition, the use of the “Scalar Confinement” version, Eq. 2.1.1, is being used
for flows where thin streams of passive scalars, such as contaminants, must be convected

over long distances.

2.2 Analysis of Zero Convection Form

When convection and (for vorticity) pressure terms are included, the results of
Sec. 2.1 may change. For example, if one convection step is followed by one confinement
step, the results may be different, even in a frame convecting with the feature. However,
according to our earlier 1-D studies [11], we still expect a steady state distribution to be
reached in the convecting frame. Further, if desired, we should be able to relax to the
above zero convection form each time step by performing a number of confinement
operations after each convection operation or simply take A¢ small (continuous time,
discrete space limit). Thus, it is important to analyze this form.

Taking the scalar case, assuming convergence as n — 0, we have

Vi (ud —e®) =0,

If ¢ (and hence @) vanishes outside the feature, we have ug, =€®,
where the point (i, j) is given the label / =0, or

Sy et =0

we take
o, = %A sec hlou(x; — x,)]sechla(y; = ¥,)], 4, x,, y, constant,

and where x, =ik, y; = jh, h is the grid cell size, and use the form corresponding to

C, =1 in Eq. 2.1.2. We then have
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which determines o . This implies that there is only a solution for € > u, since N =9
here. Of course, stability has not been proven here.

2.3 Solution with Convection

It is important to realize that the confinement steps do not alter the total
momentum, vorticity or total amount of a scalar (assuming vorticity or scalar
concentration has finite support). Also, the centroid is not changed. This is easy to show,
not only in the continuum limit but also for the discrete equations, since the confinement
terms are second derivatives. The following argument assumes, for each convection step
(n), there is at least one confinement step so that the feature remains compact. If ¢
represents a confined passive scalar or vorticity magnitude, then, using our conservative
convection routine, we have the following relationships for the dynamics of the
convecting solitary wave (we describe the 2-D case for simplicity):

For the convecting passive scalar, we have a discretization of

8,0 =-V-(§0)+h"V*(up —e®)/ At
assuming V-3 =0 . Then,
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where discrete operators are labeled.
For conservative discretization, the total amplitude

<®d>=)¢;

is independent of ». If we define the centroid
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and the weighted mean velocity
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where X, is the (fixed) position vector of node (i, j), and ¢, and g, are the scalar value
and the velocity at that node, then the centroid evolves according to:

<X >™M=< X >" +At <G >"

For vortices, the self-induced velocity which is included in the above sum exactly
cancels and, as in the passive scalar case, the g, can be taken to be an externally applied

(irrotational) velocity. The above result then still holds.

Since we are, at this point, only interested in the “expectation values” of scalars or
vorticities for thin features and that the features remain compact, spread over only a few
cells, this Ehrenfest-type relation is exactly what we need. Only the variables of
importance are, effectively, solved for. This shows that the features, when isolated,
evolve as particles with essentially no internal dynamics. However, we keep the very
important Eulerian feature that the number of features is not fixed. We could, for
example, create additional solitary waves by inserting a source: No additional
computational markers need be created, as in Lagrangian schemes. For this study, we
show that features can automatically merge and reduce in number. This will be seen in
the results of Sec. 3. As for the earlier Vorticity Confinement method, this property is
crucial for the general treatment of interacting vortical regions, especially in 3-D
[5,9,10,12].

3. Results
All results presented are in 2-D. Also, all convection cases use a conservative
second-order centered convection term together with a centered diffusion term and are

first-order-explicit in time. In all the result plots, axes are labeled with grid node location.
Plots of amplitude are made using dense contours with white grid lines superimposed.

3.1 Zero Convection

Results are presented in Fig. 1 after 0, 8, and 100 iterations, for vorticity and
velocity for a vortex in 2-D. Values used werepu =.2, € =0 and ¢ =5p . In this figure,
the vorticity contour levels extend from about % of the maximum initial value to the




maximum so that a measure of the size of the confined region can be determined. It can
be seen that the confinement is very effective and stable.

3.2 Passive Scalar Convection

A good test involves convection of a small passive scalar pulse in solid-body
rotating flow [14]. For this case a convection step was followed by a single confinement
step (including diffusion). The full summation of Eq. 2.1.2 with C, =1 leads to a thin

spreading of the pulses in the direction normal to their motion (This spreading does not
occur for vortices, for reasons described in Sec. 3.3). This scalar spreading seemed to be
due to the inclusion of “downwind” values, which is known to cause instability. We then
simply set C, =0 for downwind points. The problem was almost completely cured, and

only a very weak spreading remained, which could easily be cured, if desired.

Results are shown in Fig. 2a for a single pulse convecting through the 1* rotation
(2n) and in Fig. 2b through 10" rotation. Contours are plotted from initial maximum
value to 1/3 of that value. There are 157 time steps between pulse images (7/8 radius) and
the final image was after 12,560 time steps. This represented a travel of 1,256 cells or
about 433 pulse diameters. The open circle labels the starting location. The time step was
not set to exactly divide the circuit so we would not expect the final image to exactly
coincide with the initial one. However, the final position is within plottable accuracy of
the calculated angle and radius. The final radius can be seen to be very close to the initial
one. This is somewhat surprising since the method was only first order in time and
second order in space. We have not yet attempted to reduce the small, residual cross-flow
spreading. This could easily be accomplished with a small amount of additional negative
diffusion in the cross-stream direction. For the case computed, we used p =0.15,

€ =0.75.
Finally, a run was made with no confinement and a lower, (minimal) diffusion set
for stability. The maximum amplitude decreased to below the plotting threshold after

only n/8 radians of travel (position of the first image in Fig. 2a).

3.3 Vorticity Confinement

The incompressible fluid dynamic equations with Vorticity Confinement, Eq. 2.0,
were discretized and solved. Each time step, the same convection scheme used for the
above scalar was used. A standard pressure projection method was used to enforce
incompressibility [15]. This used a staggered grid for pressure and velocity and a box
scheme for the pressure gradient. The required Poisson equation for pressure was solved
using a direct method “FishPack”. Vorticity Confinement terms — Egs. 2.1.3 and 2.1.4,
were used, with p=0.05, € =1.5u. Results were very close to these for p =02,

¢ =1.5p, implying that the method is not very sensitive to the values of these

parameters. (Further investigaton of this point should be done). The time step, based on
grid cell size and circumferential velocity near the vortex cores, was 0.4 and the grid had
128 x 128 cells. For vortices, the full summation (Eq. 2.1.2) with all C, =1 was used,
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without excluding downwind points. This exclusion, useful for scalar convection, was not
important here because the large circulating velocities near the vortex cores rapidly
convected any cross-stream spread vorticity around the cores, keeping them close to
axisymmetric. The confinement then kept the cores compact.

331

First, vortices of opposite sign were computed with no external free-stream-
velocity, convecting only under their own induced velocities. Each time step the total
amplitudes and centroids of both positive and negative vorticity were computed. The
velocities induced by corresponding point vortices at these locations were computed on
the boundaries as velocity boundary conditions, and Dirichlet conditions were used for
pressure.

Results are presented in Fig. 3 for a sequence of time steps. The computed vortex
centroids are convecting at the same velocity, to plottable accuracy, as if they were point
vortices. The self-induced velocity in each vortex, although several times the convecting
velocity of the centroid, automatically cancels and has no effect because the method
conserves momentum, as explained in Sec. 2.3. The final images shown result from 1,800
time steps, yet the vortices are just as compact as initially. It should be mentioned that if
the vortices are significantly closer, there will be an interaction and eventually vorticity
will be exchanged. This is to be expected since there are “tails” of vorticity that (rapidly)
decrease with radius beyond the region shown.

3.3.2

Vortices with the same sign were computed as they rotated around each other
under their induced velocities. The vortices were initially (and finally) separated by 14
cells. First, the computation was done with no Vorticity Confinement, and with minimum
diffusion required for convective stability. Contours are displayed in Fig. 4 corresponding
to vorticity values between initial maximum and % of that value. It can be seen that the
vorticity rapidly diffuses. The computation was repeated with Vorticity Confinement.
Values of p and & were those used in Sec. 3.3.1. Vorticity contours between initial
maximum and % maximum are displayed for 3 different times in the 1* loop around each
other in Fig. 4a, and in the 20™ loop in Fig. 4b. The behavior is as expected: The vortices
can be seen to be essentially the same at the end (after 7,200 time steps) as initially.

The large variation in velocity in the space between the vortices can be seen in
Fig. 5, both after 1 and after 20 loops. This would make it difficult for a pde-based Taylor
expansion to give accurate results over long convection times.

As stated, the main reason for using an Eulerian method as opposed to Lagrangian
is to allow vortices to merge and otherwise change topology, so that complex, realistic
vortical configurations can be treated. This has been amply demonstrated by the original
Vorticity Confinement method both in 2-D and 3-D [5,7,9,10,12]. To demonstrate that
the new confinement method does not inhibit this merging we repeat the above
computation, but with the vortices initially 5 cells apart. This is a repeat of a calculation
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using the original Vorticity Confinement method [7]. It is known from vorticity contour
or “waterbag” methods that corotating vortices become unstable and merge when they are
initially closer than a few diameters. It can be seen in the vorticity contour plots of Fig. 6
that this merging automatically occurs, as expected, with the new Vorticity Confinement
method.

Conclusion

A new Eulerian Vorticity Confinement has been introduced. Its advantages over
the original Vorticity Confinement method are that it is simpler and easier to analyse and
explicitly conserves total momentum. The method accurately convects thin features,
either vortices or scalars, over very long distances, even though they are confined to only
2-3 grid cells. As in shock and other discontinuity capturing schemes, the details of the
internal structure of the feature are not solved for, but implicitly modeled (the features are
treated as weak solutions). Integral quantities, such as total amplitude and centroid,
however, are accurately solved for. As such, the method essentially represents the
features as nonlinear discrete solitary waves that live on the computational lattice. It is
argued that the new method is a rational generalization of 1-D discontinuity confinement
schemes to multiple dimensions.

Examples are presented for thin, convecting passive scalars and vortices in 2-D
incompressible flow.
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Appendix

The new Vorticity Confinement method can be shown to be related to, and a
generalization of, some recent 1-D discontinuity preserving schemes: In this Appendix
we show that (a) For incompressible flow, the proper generalization to multidimensions
of the first order derivatives used in 1-D discontinuity preserving schemes is the vorticity,
which is the only non-zero rotationally invariant first order velocity derivative in 2-D;
and (b), The proper generalization to multidimensions of the discontinuous logical “min”
functions used by 1-D schemes is the smooth algebraic form, Eq. 2.1.4, used in the new
Vorticity Confinement method.

1. An algebraic nonlinear negative diffusion term similar to that used here
was added to a first-order upwind method (which has an implicit positive diffusion) for 1-
D passive scalar convection [11]. The result for a constant speed pulse was a convecting,
stable solitary wave, spread over a few grid cells. A sequence of amplitudes was plotted
for a large number of time steps in a frame moving with the pulse, and it was shown that
there was a smooth underlying structure: The sequence of amplitudes at the grid nodes at
different time steps was equivalent to that generated by moving the smooth structure
through the grid at constant speed and sampling the values on the grid nodes at each time
step. The current method appears to give similar results.

2. A more compact method was derived also in [11] where the pulse had
support of exactly two grid nodes (two non-zero amplitude values) at each time step. This
was actually derived by starting from a Lagrangian particle representation with which it
is in 1-1 correspondence, although it was, of course, Eulerian.

3. In the same paper, it was shown that when the scheme was formulated in
terms of a new variable,

w, = Zu ;
0
where u, was the original variables. Step functions could be propagated indefinitely.
There was a 1-1 correspondence between the two cases.
4. The quantities used in these pulse schemes were first order derivatives of
the variables used in the step function schemes. An analog of Vorticity Confinement can

be formulated in these 1-D studies by considering the summed variable (w) to be a
velocity (v) normal to the 1-D axis (x) and the vorticity the derivative of this along the
axis:

®, =d,v(x)

We then immediately have a way to generalize to multi-dimensions. Instead of
concatenating 1-D operators, we realize that for example, in 2-D incompressible flow
there are only 2 rotationally invariant first order derivatives of velocity:

D=V.q ,
o =Vx§ li
where k denotes the direction normal to the 2-D plane.
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For incompressible flow, D is, of course, zero and we are led to formulate our
multidimensional method only in terms of . This is a rational generalization of the 1-D
3. v term.

5. The logical “min” function used in the compact 1-D scheme does not seem
to be suitable for multidimensions. While not important in 1-D, the field within a 2-D or
3-D feature should be relatively smooth and free of large variations caused by
discontinuous logical functions as the feature is rotated. A final generalization, which
leads us to our new Vorticity Confinement method, involves the function.

{35
I
If p is large, ® —> min{cﬁ;} . We use p=1 in our method (Eq. 2.1.2), which gives smooth,
algebraic results and approximates the “min” function.
6. The discontinuity capturing version of the above 1-D compact pulse
scheme (with “min” functions) of Ref. [11] is apparently similar to the recent “superbee”
scheme [13].
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Vorticity Confinement - Recent
Results: Turbulent Wake
Simulations and A New,

Conservative Formulation

J. Steinhoff !, M. Fan 2, and L. Wang 3

Abstract

Vorticity Confinement has been shown, over the last several years, to be a
way to quickly and cheaply approximate incompressible flows over complex
configurations at high Reynolds number. For these flows, there are many
important salient features that are reproduced by the method in a simple way,
on relatively coarse uniform Eulerian computational grids with fast low-order
computational methods. No complex, high order schemes and no extensive
refinement or body conforming grid are required. The basic features of the flow
that are very effectively simulated all involve vortical regions: thin boundary
layers on solid surfaces that are attached or separate, thin vortex sheets and
thin filaments that can convect over long distances with no significant physical
diffusion, and, finally, turbulent wakes, including small scale effects. These
features are very difficult to treat with conventional schemes. The main point
is that almost all of the vortical regions in these flows are either thin, so
that their internal structure is not important (analogous to shocks or contact
discontinuities in compressible flow), or contain small scale structures, such
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2 STEINHOFF, FAN & WANG

as turbulent wakes. All of these vortical structures are, of course, embedded
in an incompressible irrotational flow field, which is also efficiently computed.

First, the salient features of Vorticity Confinement solutions will be
discussed, to give the reader an understanding of the characteristics of the
method. Then, a short presentation of the original formulation of the method
will be given and a number of recent papers giving more details referenced.
This will be followed by some recent results where the method is used to treat
the small scales in turbulent wakes in LES-type simulations. Many other recent
results concern free vortices and attached flow over complex configurations,
as well as validation studies. Papers describing these will be referred to.
Finally, a new, simpler formulation will be described that is effective for both
Vorticity Confinement as well as convection of thin streams of passive scalars.
Preliminary results of this new formulation for convecting vortices and scalars
in 2-D will then be presented.

1.1 Introduction

Vorticity Confinement has been shown, over the last several years, to be a
way to quickly and cheaply approximate incompressible flows over complex
configurations at high Reynolds number(! ~1%). For these flows, there are many
important salient features that are reproduced by the method in a simple way,
on relatively coarse uniform Eulerian computational grids with fast low-order
computational methods. No complex, high order schemes and no extensive
refinement or body conforming grid are required. The basic features of the flow
that are very effectively simulated all involve vortical regions: thin boundary
layers on solid surfaces that are attached or separate, thin vortex sheets and
thin filaments that can convect over long distances with no significant physical
diffusion, and, finally, turbulent wakes, including small scale effects. These
features are very difficult to treat with conventional schemes. The main point
is that almost all of the vortical regions in these flows are either thin, so
that their internal structure is not important (analogous to shocks or contact
discontinuities(!1) in compressible flow), or contain small scale structures, such
as turbulent wakes. All of these vortical structures are, of course, embedded
in an incompressible irrotational flow field, which is also efficiently computed.

The main idea behind Vorticity Confinement is that, at high Reynolds
number, the above small vortical scales are modeled on the grid in an
inherently discrete, simple way that is much more efficient than if model
partial differential equations (pde’s) were first formulated and then resolved
with finite difference approximations. This modeling involves nonlinear terms
in the discrete equations that result in a stable negative total diffusion for the
vorticity in a band of length scales. This negative diffusion acts to confine the
small scale vorticity to a thickness of about 2 grid cells: Below this scale,
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VORTICITY CONFINEMENT - RECENT RESULTS 3

the structure is dominated by a positive diffusion. On scales significantly
larger, the negative diffusion causes the structure to contract. The equilibrium
solution results from a balance of these two effects. An important feature is
that the irrotational flow regions, as well as the very large vortical scales
that are present in the turbulent wakes are not significantly affected by these
Vorticity Confinement terms and are accurately resolved and convected by the
method, which reduces to a conventional CFD method at these large scales.

First, the salient features of Vorticity Confinement solutions will be
discussed, to give the reader an understanding of the characteristics of the
method. Then, a short presentation of the original formulation of the method
will be given and a number of recent papers giving more details referenced.
This will be followed by some recent results where the method is used to
treat the small scales in turbulent wakes in LES-type simulations®. Many
other recent results concern free vortices and attached flow over complex
configurations, as well as validation studies. Papers describing these will be
referred to. Finally, a new, simpler formulation will be described that is
effective for both Vorticity Confinement as well as convection of thin streams
of passive scalars. Preliminary results of this new formulation for convecting
vortices and scalars in 2-D will then be presented(l).

1.2 Vorticity Confinement: Salient Features

There are several different ways to characterize Vorticity Confinement - they
are all important in understanding how it works:

1. It is a way of treating flow with small vortical scales as “weak solutions”
of the Euler equations, where the small scales are treated as regularized
singular regions. In this way it is analogous to shock capturing-quantities are
conserved, not at each point but integrated through the vortical feature, which
is spread over a few grid cells. The confinement terms serve as a simple implicit
model of the internal structure and have little effect on the flow external to
the feature, which is accurately treated. Well known examples of this type
of treatment include, besides shock capturing, vortex filament and vortex
lattice schemes for convecting vortex sheets. Also, the use of panel methods
for external flows, where thin vortical boundary layers are simply treated
involves similar ideas(!2-16). An important example of this independence of
the flow outside the features involves vortex filaments with near-axisymmetric
cores with radius of curvature much larger than core radius, where the flow is
approximately 2-D in planes normal to the filaments.

9. The current Vorticity Confinement method can be treated as a “zeroth
order” approximation for the thin vortical features. As in well-known
interacting boundary layer schemes, the basic solution can be treated as
a first term in an asymptotic expansion. Higher order terms would involve
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4 STEINHOFF, FAN & WANG

modeling some of the effects of the structure, such as displacement thickness
and skin friction. In addition to boundary layers, such secondary effects could
include long-term spreading of aircraft trailing vortices'” and modeling of
any effects of axial flow on vortex breakdown. For most of the problems that
we have treated until now with Vorticity Confinement, these effects have not
been very important and the “zeroth order” approach was sufficient. Cases
where such higher order effects have already been treated include long-term
trailing vortex simulation(!”), and a study involving flow separating from a
curved surface® where the boundary layer was turbulent and affected the
separation location.

It should be mentioned that, of course, a very large amount of work has
been done, over the last few decades, on turbulent boundary layer modeling
using conventional pde-based models, (mostly calibrating Reynolds averaged
“RANS” models). The same is true of the small scales in turbulent wakes,
using large eddy simulation (LES). By comparison, very little turbulent
modeling has been done based on Vorticity Confinement, i.e., by adding
“higher order” additional discrete terms with adjustable parameters to the
basic method. For these reasons we cannot claim that Vorticity Confinement
turbulence models currently exist for these “first order” effects. We are only
stating that Vorticity Confinement appears to be a promising approach and
a framework for modeling, because of its simplicity and efficiency. Additional
work should be done to develop confinement-based turbulence models.

3. For convecting vortex filaments, the internal dynamics is, effectively,
treated as “fast” dynamics which approximately satisfies the confinement
terms separately from the other, conventional CFD terms used in the method
(these will be described below). This fast dynamics is then slaved to the basic
fluid dynamics as the filaments are “slowly” convected through the flow.

4. The Vorticity Confinement method can be thought of as incorporating
both conventional CFD ideas for solving for the “smooth”, large scale features
of the flow, and intrinsically discrete ideas for solving for the small scale
features: The confinement terms result in intrinsically discrete thin, small
scale solitary-wave structures that “live” on the computational lattice. In this
way, it is similar to lattice gas approaches. For the large scales, as mentioned,
the confinement terms have little effect and the method reverts to conventional
CFD, which is well-known to be effective for these scales.

For small scales, the method corrects the well known difficulty of treating
thin features (with, of course, large gradients) inherent in conventional CFD
schemes. For example, very fine body conforming grids are required with
conventional “Navier-Stokes” turbulence modeling methods for boundary
layers, and even then, the result is a pde-based model solution. Thin boundary
layers are very simply treated with confinement as intrinsically discrete
structures.

On the other hand, while intrinsically discrete models such as “lattice gas”
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VORTICITY CONFINEMENT - RECENT RESULTS 5

can, perhaps, be efficiently formulated for thin regions such as turbulent
boundary layers, their treatment of large scales is very inefficient. For example,
lattice gas schemes only converge statistically to smooth laminar Navier-stokes
solutions; Samples of the solution at large numbers of grid points (Ns), over
large numbers of time steps (IV;) must be used in any small region in time and
space in order to estimate the solution there. For large scales, therefore, these
methods converge like /N, N; and can be thought of as “half-order” accurate,
as opposed to conventional CFD, for which very high order methods have been
developed(!®).

1.3 Vorticity Confinement: Basic Formulation

A specific solver will be described which employs Vorticity Confinement.
However, Vorticity Confinement can be implemented in a pre-existing flow
solver, for both incompressible and compressible flow, by adding a term to
the discretized momentum conservation equations(®.

For general unsteady incompressible flows, the governing equations with the
Vorticity Confinement term are discretizations of the continuity equation and
the momentum equations, with an added term:

V-g=0
3.0
8§ = —(§-V)T+ V(p/p) + [uV>] — eslh?/ At

where § is the velocity vector, p is the pressure, p is the density, and pu is
s diffusion coefficient that includes numerical effects (we assume physical
diffusion is much smaller). For the last term, €3, € is a numerical coefficient
that, together with u, controls the size and time scales of the convecting
vortical regions or vortical boundary layers. For this reason, we refer to the
two terms in the brackets as “confinement terms”. Also, h is the grid cell size
and At the time step.

The first confinement term, or diffusion term is usually specified explicitly,
but can be implicitly present in the solver, such as in a lower order upwind
scheme. There are also many possible forms for the second confinement term.
First, the original one used in this and earlier studies will be described. Then,
a new more elegant, simpler form will be described, together with a simple
demonstration.
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6 STEINHOFF, FAN & WANG
1.4 Original Vorticity Confinement

1.4.1 Formulation

We define the second confinement term as

s =Ltaxs
T h
where v
= —L
[Vl
and the vorticity vector is given by
&= Vxq
and
1 = ||

In general, for boundary layers and convecting vortex filaments, since
computed flow fields erternal to the vortical regions are not very sensitive
to the details of the internal structure as long as they are smooth, they
are not sensitive to the parameters ¢ and p over a wide range of values.
Hence, the issues involved in setting them are similar to those involved in
setting numerical parameters in other analogous computational fluid dynamics
schemes, such as artificial dissipation in conventional shock capturing schemes.
For wake flows, € and p can be used to approximately simulate finite Reynolds
number effects, since they control the intensity of the small vortical scales.
This is an area of study that is just beginning - some results of which will be
reported here.

An important feature of the Vorticity Confinement method is that the
confinement terms are non-zero only in the vortical regions, since both the
first (diffusion) term and the second (anti-diffusion) term vanish outside those
regions (care has to be taken in the numerical implementation to preserve this
feature).

Another important feature concerns the total change induced by the
confinement correction in mass, vorticity and momentum, integrated over a
cross section of a convecting vortex. It can be shown(®9) that mass is conserved
because of the pressure projection step in the (incompressible) solver and
vorticity is explicitly conserved because of the vanishing of the correction
outside the vortical regions. Momentum is almost exactly conserved. An
extension of the original method'® explicitly conserves the momentum at
the expense of some additional complications. The new, simpler formulation,
described below in Sec.5.2 explicitly conserves momentum with no required
extensions.
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1.4.2 Results of Wake Study

Two test cases are presented in this section involving the wake structure of a
3-D circular and square cylinder.

1.4.2.1 3-D Circular Cylinder

Flow over a 3-D circular cylinder was calculated to assess the ability of
Vorticity Confinement to accurately model the wake flow behind a blunt
body. A long cylinder was ”immersed” in a uniform 141 x 101 x 61 Cartesian
grid in the streamwise, normal and spanwise directions, respectively. Periodic
conditions were imposed at the lateral boundaries. The diameter of the
cylinder was 15 grid cells. Comparisons between experiment and computed
results are given in Figs. 1 and 2. In the figures, the origin of the coordinate
system used is located in the center of the cylinder, and all distances are non-
dimensionalized by the diameter. The experimental results of Lourenco and
Shih(1® at a Reynolds number of about 3,900, were compared to.

The diffusion coefficient i was held constant for this study. The confinement
coefficient, ¢, was adjusted to impose different levels of confinement. This
resulted in different levels of the intensity of the small vortical scales in the
wake, and approximately simulated different Reynolds numbers.

Figure 1 depicts the mean streamwise velocities resulting from three values
of the confinement coefficient. Figures a) and b) depict the result of two levels
of confinement, where the flow is measured along lines traversing the wake
(normal to the cylinder axis and the mean stream) at three different locations
in the wake of the cylinder. For both values of ¢ the agreement can be seen
to be very good, indicating that the effect of the confinement parameter is
small over a range of values. Results from a case without confinement (e = 0)
are depicted in Fig. 2c. Without confinement, the flow field is dominated by
diffusive effects that are not counterbalanced by the anti-diffusive confinement
term and approximates a steady, low Reynolds number flow.

The ability of Vorticity Confinement to model the turbulent wake was
assessed by computing the rms streamwise velocity fluctuations in the wake
region. Comparisons of these fluctuations with the experimental data were
made along the same lines in the wake as for the mean velocity, for the same
three values of e. Fig. 2a (¢ = 0.25) shows very good agreement. This is
the same value that shows the best agreement for the mean velocity, as can
be seen in Fig. 1. The effect of increasing confinement to 0.5 is depicted in
Fig. 2b. In general, the effect of increased confinement is to thin the shear
layer comprising the wake boundary, and to increase the fluctuation of the
time-dependent flow from the mean flow. Fig. 3c depicts results without
confinement. Without confinement, the flow can be seen to be steady and
exhibits none of the fluctuations that occur when confinement is used.
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Figure 3 depicts isosurfaces of vorticity magnitude for the same three levels
of confinement. The use of confinement results in chaotic flow patterns, as
would be expected in three-dimensional turbulent flows. This does not occur in
two-dimensional simulations, indicating that this chaotic behavior is not due
to numerical instability created by the confinement. Increasing confinement
increases the chaotic nature of the flow in 3-D and reduces the characteristic
size of the vortical structures, analogous to what would be expected with an
increase in Reynolds number. Clearly, the use of confinement allows small-
scale time-dependent wake structures to be generated on extremely coarse
grids with the small-scale structure captured over only 1 ~ 2 grid cells. Also,
these small-scale structures serve as a viscous sink for turbulent energy, as in
physical turbulence.

1.4.2.2 8-D Square Cylinder

Flow over a square cylinder was also calculated. As in the circular case, the
cylinder was “immersed” in a uniform 141 x 101 x 61 Cartesian grid and
periodic conditions imposed at the lateral boundaries. The diameter (length
of each side) of the cylinder was also 15 grid cells. The same coordinate
system was used as for the circular cylinder. Results of the computations
were compared to the experimental results of Lyn et al.?% at a Reynolds
number of about 21,400.

As in the circular cylinder case, the diffusion coefficient p was set to 0.15.
The confinement coefficient, e, was adjusted to impose different levels of
confinement so as to approximate the effects of different Reynolds numbers.

Figure 4 depicts the comparison with experimental data of the time-
averaged streamwise velocity along a streamwise line extending downstream
from the middle of the leeward face of the cylinder. Results of two values of the
confinement coefficient are plotted. Figure 6 shows the time-averaged velocity
along a line traversing the wake (normal to the cylinder axis and the mean
stream), as in the circular case, at £ = 1. Symbols represent the experimental
data. Our numerical results agree well with the experimental data for ¢ = 0.35
and € = 0.25.

Comparisons of the computed turbulence level with the experimental results
also show reasonably good agreement in Fig. 6a. As in the circular case,
the same value of € that gave good agreement with experiment for RMS
velocity also gave good agreement formean velocity. The effect of decreasing
confinement is shown in Fig. 6b. Comparing this case with the previous 3-D
circular cylinder case, it is easy to see that a higher value of € is required for
better results. This is apparently because the Reynolds number has increased
from about 3,900 in the 3-D circular cylinder case to roughly 21,400 in the
present 3-D square cylinder case.
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1.4.2.83 Synopsis of Cylinder Study

In subsequent studies, the correlation between € and Reynolds number will be
studied by comparisons between computation and experiment for other cases
and a useful calibration of € determined. Also, it should be emphasized that
our agreement with experiment is closer than many much finer, conforming
grid studies with much more complex LES pde models(®!) each requiring a
number of empirical coefficients. As explained, just one coefficient is adjusted
here, on a simple, coarse uniform Cartesian grid.

1.5 New Vorticity Confinement

1.5.1 Formulation

Because additional corrections must be added to make the original
confinement explicitly conserve momentum, a new, simpler formulation that
does not have these problems has been developed. This new, intrinsically
discrete formulation is presented in this section.

A more detailed description is presented in [1]. First, a formulation for scalar
confinement is given. Then, a velocity-based (primitive variable) Vorticity
Confinement correction is given that reduces to the scalar confinement in
terms of vorticity when the curl is taken.

1.5.1.1 Scalar Formulation

The scalar formulation presented here is related to that presented in [8] in
1-D.
We start with the form for a scalar :

™t = 9" — AtV - §o" + 59" 5.1.1
where the confinement correction:
5¢" = K [uV2¢" — V23"

where
S Ci(gn+8)]
= | 5.1.2
P
1
where the sum is over a set of grid nodes near and including the node where ¢
is computed, and ¢ is a small positive constant (~ 10~8) to prevent problems

due to finite precision. The coefficients, C;, can be varied but good results are
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obtained by simply setting them to 1. For example, in 2-D, one possibility is
-1

+1 41 )
21321(¢?+a’j+ﬁ +4)”
n _ |o=—18=-
7 = = 5.1.3

where N neighboring terms are taken.
Here, we assume ¢" > 0. Negative values can also be accommodated with
a small extension. Both u and ¢ are positive.

An important feature is that all terms are homogeneous of degree 1 in Eq.
| 5.1.1. This is important because the confinement not depend on the scale of
| the quantity being confined. Another important feature is the nonlinearity.
| It is easy to show that a linear combination of terms of different order in
‘ the derivatives cannot lead to a stable confinement for any finite range of
‘ coefficients.

For smooth ¢ fields (large scales), the last term represents a negative

T diffusion. If 4 < €, where N is the number of terms in Eq. 5.1.2, the total
diffusion is negative. However, the iteration of Eq. 5.1.1 is still stable and
converges for values of € up to about 5, resulting.in an effective negative

| diffusion coefficient in the long wavelength limit. Also, for ¢ = 0, the discrete,

‘ converged solution can be given exactly in terms of (translationally invariant)

| sech functions.

| For convection using a conservative discretization, the total amplitude

<®>=) ¢y
ij
is independent of n. If we define the centroid of an isolated region,
<X>"=d #heh/ <>
ij
and the weighted mean velocity

<@>r=>aen/ <2 >
i

where Z;; is the (fixed) position vector of node (3, j}, and ¢;; and §;; are the
scalar value and the velocity at that node, then the centroid evolves according
to:
<X >ml=< X >" At < >"
For vortices, the self-induced velocity which is included in the above sum
exactly cancels and, as in the passive scalar case, the gi; can be taken to be
an externally applied (irrotational) velocity. The above result then still holds.
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VORTICITY CONFINEMENT - RECENT RESULTS 11

Since we are, at this point, only interested in the “expectation values” of
scalars or vorticities for thin features and that the features remain compact,
spread over only a few cells, this Ehrenfest-type relation is exactly what we
need. Only the variables of importance are, effectively, solved for. This shows
that the features, when isolated, evolve as particles with essentially no internal
dynamics. However, we keep the very important Eulerian feature that the
number of features is not fixed. We could, for example, create additional
solitary waves by inserting a source: No additional computational markers
need be created, as in Lagrangian schemes. For this study, we show that
features can automatically merge and reduce in number. This will be seen in
the results of Sec. 5.2. As for the earlier Vorticity Confinement method, this
property is crucial for the general treatment of interacting vortical regions,
especially in 3-D(47:9:10), :

1.5.1.2 Vorticity Formulation

The next step involves letting ¢ be the magnitude of vorticity and deriving an
equation for the corresponding velocity correction that leads to Eq. 5.1.1 when
the curl is taken (in 2-D). This correspondence is still close for a 3-D vortex
filament if the radius of curvature is large so that the flow is approximately 2-
D in sections normal to the filament axis. This will result in a new formulation
of Vorticity Confinement.

We simply define

@t =" + AtV - " + 67" 5.1.4
where the confinement correction:
8G" = WA (uV3q™ + €V x o™)

or,for V-q"=0,
8§ = —h2V x (u@"™ — ew™)

where

and

B Oy (/4 E ) ek
7= ! 5.1.5
@ +6 N o

where the sum is the same as in Eq. 5.1.3.
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1.5.2 Results

All results presented are in 2-D. Also, all convection cases use a conservative
second-order centered convection term together with a centered diffusion term
and are first-order-explicit in time. In all the result plots, axes are labeled
with grid node location. Plots of amplitude are made using dense contours
with white grid lines superimposed.

1.5.2.1 Passive Scalar Convection

A good test involves convection of a small passive scalar pulse in solid-body
rotating flow(®?. For this case a convection step was followed by a single
confinement step (including diffusion). The full summation of Eq. 5.1.2 with
C; = 1 (Eq. 5.1.3) leads to a spreading of the pulses in the direction normal to
their motion (This spreading does not occur for vortices, for reasons described
in Sec. 5.2.2). This scalar spreading seemed to be due to the inclusion of
“downwind” values, which is known to cause instability. By setting C; =0 for
downwind points, the problem is almost completely cured, and only a very
weak spreading remains.

Results are shown in Fig. 7a for a single pulse convecting through the 1st
rotation (27) and in Fig. 7b through the 10th rotation. Contours are plotted
from initial maximum value to 1/3 of that value. The final image in Fig. 7b was
after 12,560 time steps. This represented a travel of 1,256 cells or about 433
pulse diameters. The open circle labels the starting location. The time step
was not set to exactly divide the circuit so we would not expect the final image
to exactly coincide with the initial one. However, the final position is within
plottable accuracy of the calculated angle and radius. The final radius can be
seen to be very close to the initial one. This is somewhat surprising since the
method was only first order in time and second order in space. We have not
yet attempted to reduce the small, residual cross-flow spreading. This could
easily be accomplished with a small amount of additional negative diffusion
in the cross-stream direction. For the case computed, we used p = 0.15 and
e =0.75.

Finally, a run was made with no confinement and a lower, (minimal)
diffusion set for stability. The maximum amplitude decreased to below the
plotting threshold after only 7 /8 radians of travel (position of the first image
in Fig. 2a).

1.5.2.2 Vorticity Convection

The incompressible fluid dynamic equations with Vorticity Confinement,
Eq. 3.0, were discretized and solved. Each time step, the same convection
scheme used for the above scalar was used. A standard pressure projection
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VORTICITY CONFINEMENT - RECENT RESULTS 13

method was used to enforce incompressibility(®®). This used a staggered grid
for pressure and velocity and a box scheme for the pressure gradient. The
required Poisson equation for pressure was solved using a direct method
“FishPack”. Vorticity Confinement terms - Egs 5.1.4 and 5.1.5, were used,
with g = 0.05 and € = 1.54. Results were very close to those for p = 0.2
and € = 1.54, implying that the method is not very sensitive to the values of
these parameters. (Further investigation of this point should be done). The
time step, based on grid cell size and circumferential velocity near the vortex
cores, was 0.4 and the grid had 128 x 128 cells. For vortices, the full summation
(Eq. 5.1.3) with all C; = 1 was used, without excluding downwind points. This
exclusion, useful for scalar convection, was not important here because the
large circulating velocities near the vortex cores rapidly convected any cross-
stream spread vorticity around the cores, keeping them tlose to axisymmetric.
The confinement then kept the cores compact.

First, interacting vortices of opposite sign were computed with no external
free-stream-velocity, convecting only under their own induced velocities. To
approximate far-field boundary conditions, each time step the total amplitudes
and centroids of both positive and negative vorticity were computed. The
velocities induced by corresponding point vortices at these locations were
computed and imposed on the boundaries. Dirichlet conditions were used for
pressure.

Results are presented in Fig. 8 for a sequence of time steps. The computed
vortex centroids are convecting at the same velocity, to plottable accuracy, as
if they were point vortices. The self-induced velocity in each vortex, although
several times the convecting velocity of the centroid, automatically cancels
and has no effect because the method conserves momentum, as explained in
Sec. 5.1.1. The final images shown result from 1,800 time steps, yet the vortices
are just as compact as initially. It should be mentioned that if the vortices are
significantly closer, there will be an interaction and eventually vorticity will
be exchanged. This is to be expected since there are “tails” of vorticity that
(rapidly) decrease with radius beyond the region shown.

Vortices with the same sign were computed as they rotated around each
other under their induced velocities. The vortices were initially (and finally)
separated by 14 cells. First, the computation was done with no Vorticity
Confinement, and with minimum diffusion required for convective stability.
Contours are displayed in Fig. 9 corresponding to vorticity values between
initial maximum and 1/4 of that value. It can be seen that the vorticity rapidly
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diffuses. The computation was repeated with Vorticity Confinement. Values
of 11 and e were those used above for opposite sign vortices. Vorticity contours
between initial maximum and 1/4 maximum are displayed for 3 different times
in the 1st loop around each other in Fig. 9a, and in the 20th loop in Fig. 9b.
The behavior is as expected: The vortices can be seen to be essentially the
same at the end (after 7,200 time steps) as initially.

As stated, the main reason for using an Eulerian method as opposed to
Lagrangian is to allow vortices to merge and otherwise change topology, so
that complex, realistic vortical configurations can be treated. This has been
amply demonstrated by the original Vorticity Confinement method both in
2-D and 3-D“3.7:9:10) To demonstrate that the new confinement method
does not inhibit this merging we repeat the above computation, but with
the vortices initially 5 cells apart. This is a repeat of a calculation using the
original Vorticity Confinement method(®. It is known from vorticity contour of
“waterbag” methods(24) that corotating vortices become unstable and merge
when they are initially closer than a few diameters. It can be seen in the
vorticity contour plots of Fig. 10 that this merging automatically occurs, as
expected, with the new Vorticity Confinement method.

1.6 Conclusion

The ability of the original Vorticity Confinement method to efficiently
compute blunt body turbulent wakes was demonstrated. This involved an
LES-type representation but with the small scales treated as inherently
discrete structures. The computations involved a circular and square cylinder
in 3-D. -

A new Eulerian Vorticity Confinement has been introduced. Its advantages
over the original Vorticity Confinement method are that it is simpler and easier
to analyse and explicitly conserves total momentum. The method accurately
convects thin features, either vortices or scalars, over very long distances,
even though they are confined to only 2-3 grid cells. As in shock and other
discontinuity capturing schemes, the details of the internal structure of the
feature are not solved for, but implicitly modeled (the features are treated
as weak solutions). Integral quantities, such as total amplitude and centroid,
however, are accurately solved for. As such, the method essentially represents
the features as nonlinear discrete solitary waves that live on the computational
lattice. It is argued that the new method is a rational generalization of 1-D
discontinuity confinement schemes to multiple dimensions.

Examples are presented for thin, convecting passive scalars and vortices in
2-D incompressible flow.
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(a) £ =0.15,e =0.25 (b) p=0.15,e=0.5

(c) g = 0.15,e = 0.0 (No Confinement)

Figure 3 Isosurfaces of Vorticity Magnitude (Isosurface Level = 0.15)
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Figure 4 Comparison of time-averaged streamwise velocity along a
streamwise line. Symbols denote experimental data.
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Figure 5 Comparison of time-averaged velocity profiles at x = 1. Symbols
are experimental data.
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Figure 6 Comparison of root mean square velocity fluctuation profiles at
x = 1. Symbols are experimental data.
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Figure 8 Vorticity contour plots of self-induced flow by two point vortices
(15 cells apart) with opposite sign
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Figure 9 Vorticity contour plots of self-induced flow by two vortices (14 cells
apart) with same sign. (a) without Vorticity Confinement; (b)with Vorticity
Confinement, 1st loop; (c)with Vorticity Confinement, after 20th loops.
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Abstract

Over the last few years, a new
flow  computational  methodology,
Vorticity Confinement, has been shown
to be very effective in treating
concentrated vortical regions. These
include thin vortex filaments which can
be numerically convected over arbitrary
distances on coarse Eulerian grids while
requiring only ~2 grid cells across their
cross section. They also include
boundary layers on surfaces “immersed”
in non-conforming uniform Cartesian
grids, with no requirement for grid
refinement or complex logic near the
surface.

In this paper we use Vorticity
Confinement to treat flow over blunt
bodies, including  attached  and
separating boundary layers, and resulting
turbulent wakes. The same basic idea is
applied to all of these features: At the
smallest scales (~2 cells) the vortical
structures are captured and treated,
effectively, as solitary waves that are
solutions of nonlinear discrete equations
on the grid. These do not represent
discretizations of partial differential
equations (pde’s) but nonlinear models

of the structures, directly on the grid.
They allow the boundary layer to be
effectively “captured”. In the turbulent
wake, where there are many scales, they
represent an effective small scale energy
sink. However, they do not have the
unphysical spreading due to numerical
diffusion at these scales, which is
present in conventional computational
methods.

The basic modeling idea is
similar to that used in shock capturing,
where intrinsically discrete equations are
satisfied in thin, modeled regions. It is
argued that, for realistic high Reynolds
number flows, this direct, grid-based
modeling approach is much more
effective than first formulating model
pde’s for the small scale, turbulent
vortical regions and then discretizing
them.

Results are presented for 3-D
flows over round and square cylinders
and a realistic helicopter landing ship.
Comparisons with experimental data are
given.




Finally, a new  simpler
formulation of Vorticity Confinement is
given together with a related formulation
for confinement of passive scalar fields.

1. Introduction

Many real-world flows are
characterized by regions of concentrated
vorticity. These are typically turbulent at
realistic Reynolds numbers and can
convect over long distances, either as
thin vortex filaments or blunt body
wakes containing small-scale vortical
structures. Also, boundary layers are
typically  thin, turbulent vortical
structures near solid surfaces. Even
though the Navier-Stokes equations
apply to these flows, it is not feasible to
solve them on foreseeable computers
due to the ever-present small scales. As a
result, conventional CFD methods
involve first formulating the partial
differential equations (pde’s) that model
these turbulent regions. These pde’s are
then discretized in the turbulent regions
and then solved. This typically requires
large computer resources and difficult
grid generation. The problem is that
resolving even the model pde’s requires
very fine computational grids, which
must conform to the surface for the
boundary layer. Further, these methods
typically dissipate thin filaments and
vortical structures in the wake as they
convect. This is true even if on the order
of 10 grid points are devoted to the cross
section of each structure and complex,
high order discretizations are used. The
problem is intrinsic to the discretization
of the convective terms and made worse
by the use of dissipative terms to model
the turbulent effects. Finally, even if the
model pde’s are resolved, the result is,

of course, still a model approximation of
the turbulent flow.

In this paper, we describe an
entirely new CFD methodology where
very different numerical models are used
for vortical regions. Instead of first
hypothesizing a turbulence model based
on pde’s and then trying to accurately
discretize and resolve them, we model
the internal structure of the vortical
regions directly on the grid using
generalized nonlinear difference
equations, rather than wusing finite
difference discretizations of partial
differential equations that attempt to
approximately ~ resolve the model
equations (and the vortical structures).
This approach allows treatment of
vortical structures as objects spread over
only 1-2 grid cells on coarse, essentially
uniform Cartesian computational grids.

These ideas are implemented in
the methodology termed Vorticity
Confinement. Although new for vortical
regions, these ideas are old for the
treatment of shocks, starting with
VonNeumann & Richtmyer [1], Lax [2]
and others. There, as is well known,
shocks are treated as thin regions spread
over a few grid cells that obey discrete,
grid-based nonlinear model equations,
that conserve certain quantities. This
approach has been shown to be more
effective than trying to discretize and
solve the applicable Navier-Stokes pde’s
in those thin regions. One difference,
however, is that with shocks, unlike
vortical regions, characteristics slope
inward toward the shock. As a result, the
modeling is simpler than that with
vortical structures. One of the first
confinement-type schemes for contact
discontinuities, where, unlike shocks,
physical characteristics do not help, was




developed by Harten [3], but was
specialized to one-dimensional
compressible flow.

Many results have been obtained
in recent years using Vorticity
Confinement [4-22]. Lohner has a very
good short review of this work [18].
Initial results were for isolated,
convecting vortex filaments [14-16].
Then, vortices convecting past airfoils
and wings (blade — vortex interactions)
were treated [13]. In this early study,
unlike in our current studies, near the
surface a surface-fitted grid was used for
the wing with surface grid refinement to
resolve the actual Navier-Stokes
equations, since only a low Reynolds
number, laminar, case was treated. To
accommodate this grid refinement with
Vorticity Confinement, the parameter
specifying the strength of the Vorticity
Confinement term (&) was made to be
proportional to grid size so that it
automatically vanished in the fine-grid
boundary layer region, but was able to
confine the convecting vortex in the
external, coarse-grid region. Our current
studies, like those described in this
paper, involve surfaces “immersed” in
uniform, non-conforming grids with no
grid refinement and use a constant value
for € .

Recently, Vorticity Confinement
has been used together with unstructured
grids [18, 19]. When using these grids,
which have rapidly changing cell sizes,
care must be taken not only that € varies
properly with cell size, but also that the
confinement correction does not extend
beyond the vortex core due to numerical
artifacts of the implementation. This
property is true in the continuum limit,
as shown in the description of Sec.2, and
should be preserved in the discretization.
If the correction does extend beyond the
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vortex, then it could erroneously affect
surface pressure if a vortex is passing
near a surface. This could be important,
for example, for delta wings [18] and
similar cases, where vortices convect
near surfaces. In fact, for delta wings, it
is well known that there is a feeding
sheet from the leading edge causing the
vortex to grow in strength as it convects
and causing the characteristics to point
towards it. In such cases, for a
reasonable grid, confinement is not
really needed (until the vortex convects
past the trailing edge). If confinement is
used correctly, however, it should not
change the nearby pressure on the
surface even in these cases, for high
Reynolds number flow. Finally, in low
Reynolds number viscous flow cases
where laminar flow occurs, the proper
Navier-Stokes equations should, of
course, be used, since the vortical scales
are then not small and there is no need to
discretize model equations for small
scales.

In this paper, Vorticity
Confinement is applied to a series of
blunt bodies, a circular and a square
cylinder, and a realistic helicopter
landing ship. In the cylinder cases, for
which unsteady experimental results are
available, comparison is made. The ship
case demonstrates the ability of Vorticity
Confinement  to  preserve  thin,
concentrated vortical structures over
long distances. Also velocity and vortex
trajectory computations are shown to
agree well with experimental results.
All cases were run on grids much
coarser than those required by
conventional CFD methods and did not
require body conforming grid generation
or refinement near the surfaces.




2. Vorticity Confinement

Vorticity Confinement is a
method to preserve  convecting,
concentrated vorticity on a coarse grid;
the vortical structures can represent
boundary layers over solid surfaces, the
smaller scales (of the order of a grid cell)
in turbulent wakes, or separated, thin
vortex filaments that convect over
arbitrarily long distances. Vorticity
Confinement can be implemented in a
pre-existing flow solver, for both
incompressible and compressible flow,
by adding a term to the discretized
momentum conservation equations [12].

For general unsteady
incompressible flows, the governing
equations with the Vorticity
Confinement term are discretizations of
the continuity equation and the
momentum equations, with an added
term:

V-§G=0 2.0.1

R | L
8,§=—(4-V)§ —;Vp +[uV?G —€5]
2.0.2

where g is the velocity vector, pis the
pressure, p is the density, and p is a
diffusion coefficient that includes
numerical effects (we assume physical
diffusion is much smaller). For the last
term, €5, € is a numerical coefficient
that, together with p , controls the size
and time scales of the convecting
vortical regions or vortical boundary
layers. For this reason, we refer to the
two terms in the brackets as
“confinement terms”.

The first confinement term, or
diffusion term is wusually specified
explicitly, but can be implicitly present
in the solver, such as in a lower order
upwind scheme. There are also many
possible forms for the second
confinement term. First, the original one
used in this and earlier studies will be
described. Then, a new more elegant,
simpler form will be described, together
with a simple demonstration.

2.1 Original Form

§=nxd 2.1.1
where

A=Vn/|vn| 2.12

the vorticity vector is given by

@=Vx§g 2.1.3
and
n=3| 2.14

In general, for boundary layers
and convecting vortex filaments,
computed flow fields external to the
vortical regions are not sensitive to the
parameters ¢ and p over a wide range

of values. For example, the flow outside
an axisymmetric 2-D vortex core is
independent of the vortical distribution,
and hence does not depend on € and p

as long as the core is thin. Hence, the
issues involved in setting them are
similar to those involved in setting
numerical parameters in other standard
computational fluid dynamics schemes,
such as artificial dissipation in many
conventional  compressible  solvers.
There, the flow outside 1-D captured
shock regions does not depend on the
exact internal structure, as long as it is




thin. For wake flows, € and p can be

used to approximately simulate finite
Reynolds number effects, since they
control the intensity of the small vortical
scales.

An important feature of the
Vorticity Confinement method is that the
Confinement terms are non-zero only in
the vortical regions, since both the
diffusion term and the anti-diffusion
term vanish outside those regions (care
has to be taken in the numerical
implementation to preserve this feature).

Another  important  feature
concerns the total change induced by the
confinement correction in mass, vorticity
and momentum, integrated over a cross
section of a convecting vortex. It can be
shown [14,16] that mass is conserved
because of the pressure projection step in
the solver and vorticity is explicitly
conserved because of the vanishing of
the correction outside the vortical
regions. Momentum is almost exactly
conserved. A small extension of the
original method [9], explicitly conserves
the momentum. The new formulation,
described below in Sec2.2 also
explicitly conserves momentum.

It should be mentioned that the
above pde form for the confinement
cannot be said to be resolved since
vorticies are captured in only a few grid
cells. Accordingly, we can only say that
the pde form is only used to motivate
the final discrete form and that a large
body of numerical evidence has been
given that the terms result in confined
vortices.

2.2 New Vorticity Confinement
Formulation

Because of the above issue
concerning the pde form and that
additional corrections must be added to
make it explicitly conserve momentum,
a new, simpler formulation that does not
have these problems has been developed.
This new, intrinsically  discrete
formulation is presented in this section.

A more detailed description is
being presented in [23]. First, a
formulation for scalar confinement is
given. Then, a velocity-based Vorticity
Confinement correction is given that
reduces to the scalar confinement in
terms of vorticity when the curl is taken.

The scalar formulation presented
here is related to that presented in [12] in
1-D. In this section no convection is
used, only the two confinement terms, so
that the behavior can be seen more
clearly. Excellent results are found with
convection and will be shown in [23].

We start with an iteration for a
scalar ¢ :

¢"+‘ =¢" + uvip” —-eV2@" 22.1
where

Zl:c, (7 +3)" B
2.Ci

Q" = 222

where the sum is over a set of grid nodes
near and including the node where @ is
computed, and &is a small positive
constant (~ 107 ) to prevent problems
due to finite precision. The coefficients,
C,, can be varied but good results are
obtained by simply setting them to 1.

For example, in 2-D, one
possibility is
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where N neighboring terms are taken.

Here, we assume ¢ 20.

Negative  values can also  be
accommodated with a small extension.
Both p and ¢ are positive.

An important feature is that all
terms are homogeneous of degree 1 in
Eq. 2.2.1. This is important because the
confinement not depend on the scale of
the quantity being confined. Another
important feature is the nonlinearity of
different order in the derivatives. It is
easy to show that a linear combination of
terms cannot lead to a stable
confinement for any finite range of
coefficients.

For smooth ¢ fields, the last

term represents a negative diffusion. If
p <e, where N is the number of terms

in Eq. 222, the total diffusion is
negative. However, the iteration Eq.
2.2.1 is still stable and converges for
values of € up to about 5 p, resulting in

an effective  negative  diffusion
coefficient in the long wavelength limit.
Also, the discrete, converged solution
can be given exactly in terms of sech
functions.

The next step involves letting ¢
be the magnitude of vorticity and
deriving an  equation for  the
corresponding velocity correction that
leads to Eq. 2.2.1 when the curl is taken
(exactly in 2-D, or for a straight vortex

in 3-D). This will result in a new
formulation of Vorticity Confinement.

We simply define

g™ =" +uvig" +eVxw" 224

or,for V-g=0,
= n+l =n . <n il
qg" =q —Vx(pm —aw) 225
where
G"=Vxg" 22.6
and
-1
| = ler]+s)
= 2| 22.7
" N

where the sum is the same as in Eq.
2.2.2.

Results are presented in Fig.l
after 0, 8, and 100 iterations, for
vorticity and velocity for a vortex in 2-
D. Values used werep =.2, ¢ =0 and
e =5u. In this figure, the vorticity
contour levels extend from about Y of
the maximum initial value to the
maximum so that a measure of the size
of the confined region can be
determined. @~ We  are  currently
investigating the new method for
implementation in our codes. In
addition, the wuse of the “Scalar
Confinement” version, Eq. 2.2.1, is
being used for flows where thin streams
of passive scalars, such as contaminants,
must be convected over long distances.
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Figure.1 Vorticity contours and
vector fields of velocity

3. Results

Three test cases are presented in
this section. First, the effects of
Vorticity Confinement on the wake
structure of a 3-D circular and square
cylinder are presented.  The third
example shows the application of
Vorticity Confinement to a realistic flow
simulation for a ship configuration.

3.1 3-D Cylinder

3.1a 3-D Circular Cylinder

Flow over a 3-D circular cylinder
was calculated to assess the ability of
Vorticity Confinement to accurately
model the wake flow behind a blunt
body. A long cylinder was “immersed”
in a uniform 141x101x61 Cartesian
grid in the streamwise, normal and
spanwise  directions,  respectively.
Periodic conditions were imposed at the
lateral boundaries. The diameter of the
cylinder was 15 grid cells. The origin of
the coordinate system used is located in
the center of the cylinder, and all
distances are non-dimensionalized by the
diameter, shown in Fig. 2. Results of
the computations were compared to the
experimental results of Lourenco and
Shih at a Reynolds number of about
3,900, described in Ref. [24]. The
computational results were all averaged
over the spanwise direction.

The diffusion coefficient p was

held constant for this study. The
confinement coefficient, € , was adjusted
to impose different levels of
confinement. This resulted in different
levels of the intensity of the small
vortical scales in the wake, and




approximately  simulated  different
Reynolds numbers.

. 1.5¢ 292

Figure 2. Measurement Positions For
Circular Cylinder

Figure 3 depicts the mean
streamwise velocities resulting from
three values of the confinement
coefficient. Figures a) and b) depict the
result of two levels of confinement,
where the flow is measured along lines
which are normal to the cylinder axis
and the mean stream, at three different
locations in the wake of the cylinder
shown in Fig. 2. For both values of ¢
the agreement can be seen to be very
good, indicating that the effect of the
confinement parameter is small over a
range of values. Results from a case
without confinement are depicted in Fig.
3¢. Without confinement, the flow field
is dominated by diffusive effects that are
not counterbalanced by the anti-diffusive
confinement term and approximates a
steady, low Reynolds number flow.

15~

-05

0
/D

c) p=0.15, ¢ = 0.0 (No Confinement)

Figure 3. Mean Streamwise Velocity
Profiles. Symbols are experimental Data.

The ability of  Vorticity
Confinement to model a turbulent wake
was assessed by computing the rms
streamwise velocity fluctuations in the
wake region. Comparisons of these




fluctuations with the experimental data e
were made along the same lines in the
wake as for the mean velocity, for the
same three values of ¢ . Fig. 4a (¢ =
0.25) shows very good agreement. The
effect of increasing confinement to 0.5 is
depicted in Fig. 4b. In general, the
effect of increased confinement is to thin
the shear layer comprising the wake
boundary, and to increase the fluctuation
of the time-dependent flow from the
mean flow. Fig. 4c depicts results

without  confinement. Without a)
confinement, the flow can be seen to be
steady and exhibits none of the “E
fluctuations that would occur when b
confinement is used. o ; wos ox
. § .
Figure 5 depicts isosurfaces of 5 “E
vorticity magnitude for the same three #at A NI
levels of confinement. The use of o ST L T
confinement results in chaotic flow uf
patterns, as would be expected in three- ol ) wocza
dimensional turbulent flows. This does s o s
y/D

not occur in two-dimensional
simulations, indicating that this chaotic
behavior is not due to numerical
instability created by the confinement.

b) p=0.15,£=0.5

Increasing confinement increases the r

chaotic nature of the flow in 3-D and saf-
reduces the characteristic size of the i e
vortical structures, analogous to what o v e
would be expected with an increase in vk

Reynolds number. Clearly, the use of P uf T e
confinement allows small-scale time- ) S
dependent wake structures to be of

generated on extremely coarse grids with wb T wona
the small-scale structure captured over T S VU
only 1~2 grid cells. Also, these small- ¥/o

scale structures serve as a viscous sink
for turbulent energy, as in physical
turbulence.

¢) u=0.15, £ =0.0 (no confinement)

Figure 4. Streamwise Reynolds
Stresses. Symbols Denote Experimental
Data




a) p=0.15, ¢ = 0.25, Isosurface Level
=40.15

b) u=0.15, ¢ =0.5, Isosurface Level =
+0.15

¢) 1=0.15, ¢ =0., Isosurface Level =

+0.15
Figure 5. Isosurfaces of Vorticity
Magnitude
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3.1b 3-D Square Cylinder

Flow over a square cylinder was
also calculated. As in the circular case,
the cylinder was “immersed” in a
uniform 141x101x61 Cartesian grid
and periodic conditions imposed at the
lateral boundaries. The diameter (Iength
of each side) of the cylinder was also 15
grid cells. The same coordinate system
was used as for the circular cylinder, as
shown in Figure 6. Results of the
computations were compared to the
experimental results of Lyn et al. [25] at
a Reynolds number of about 21,400. The
computational results were all averaged
over the spanwise direction.

D=t

Figure 6: Measurement Positions For
Square Cylinder

As in the circular cylinder case,
the diffusion coefficient u was also held

constant at 0.15. The confinement
coefficient, ¢ , was adjusted to impose
different levels of confinement so as to
approximate the effects of different
Reynolds numbers.

Figure 7 depicts the comparison
with experimental data of the time-
averaged streamwise velocity along a
streamwise line extending downstream
from the middle of the leeward face of
the cylinder. Results of two values of the
confinement coefficient are plotted.
Figure 8 shows the time-averaged




velocity along a line normal to the
cylinder axis and the mean stream at X =
1. Symbols represent the experimental
data. Our numerical results agree well
with the experimental data.
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Figure 7. Comparison of time-averaged
streamwise velocity along a streamwise
line. Symbols denote experimental data.

Comparisons of the computed
turbulence level with the experimental
results also show reasonably good
agreement in Fig. 9a. The effect of
decreasing confinement is shown in Fig.
9b. Comparing this case with the
previous 3-D circular cylinder case, it is
easy to see that a higher value of ¢ is
required for better results. This is
apparently because the Reynolds number
has increased from about 3,900 in the 3-
D circular cylinder case to roughly
21,400 in the present 3-D square
cylinder case.
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3.1c Synopsis of Cylinder Study

In subsequent studies, the
correlation between & and Reynolds
number will be studied by comparisons
between computation and experiment for
other cases and a useful calibration of €
determined. Also, it should be
emphasized that our agreement with
experiment is closer than many much
finer grid studies with much more
complex LES pde models [26], each
requiring a number of empirical
coefficients. Just one coefficient is
adjusted here, on a simple, coarse grid.

3.2 Ship Configuration

The  present method  of
developing the operating limits for
helicopters landing or taking off from
ships is accomplished largely through
flight tests, which are time-consuming,
costly, and potentially dangerous. The
ability to develop the operational limits
using computational methods as an
adjunct to present methods has the
potential of significantly reducing cost,
time, and risk. Figure 10 depicts the ship
configuration used in this study, which
has undergone wind tunnel testing by
Caradonna [27].

The ship configuration is 80 units
from bow to stern. The front of the bow
is located at X=0; the Y=0 plane is
perpendicular to the deck and is
coincident with the deck midplane. The
deck is 13 units wide, extending from
Y=-6.5 to 6.5. The deck surface is
located at Z=0, with positive Z upwards.
The aerodynamic domain was modeled
with two grids: a 401 x 121 x 74 grid
extended from X=-50 to 150, Y=+/- 30,
and Z=-6.5 to 30. Far-field boundary
conditions were imposed on the surfaces




of this grid. A second grid was used to
more highly resolve the forward deck
region. The second grid (501 x 92 x 51)
extended from X=-10 to 50, Y=-8 to
2.92, and Z=-2.5 to 3.5. Boundary
conditions were imposed on the inner
grid via interpolation. In addition, the
outer grid obtained flow field
information from the inner grid via
interpolation at interior boundaries. As a
result, two-way flow field
communication was effected to obtain a
globally consistent flow field. Velocities
were measured on a plane (X=23.63) for
a number of Z locations and were
compared with computational results.

Figure 10. Helicopter Landing Ship

Figure 11 depicts vorticity
isosurfaces over the ship deck for a wind
aspect angle of 20°. Ship flow fields are
often characterized by the development
of a strong vortex at the windward edge
of the deck that subsequently convects
across the ship deck. The effect of field
confinement is illustrated in a
comparison between the isosurfaces of
Figs. 11a and 11b. Without confinement
(Fig. 1la), the vortex is greatly
dissipated; with confinement (Fig. 11b),
the deck vortex persists indefinitely over
the deck surface. The view in Fig. 11 is
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looking down from above the deck with
the bow at the bottom of the figure.

a) No Confinement b) With Confinement

Figure 11. Isosurface of Vorticity on
Ship Deck

The computed vortex location is
very close to the experimental location.
These vortical structures are major
features of the ship flow field, and would
be difficult to resolve and maintain with
conventional CFD methods without a
much finer mesh. By contrast, the
vortical structures are resolved and
persist on a relatively coarse mesh with
Vorticity Confinement.  This is in
accordance with physical expectations,
in that the strength and structure of the
vortices are maintained  without
significant dissipation. ~ Quantitative
results are presented in Fig. 12, which
depicts velocity one unit above the deck
at a constant height horizontal line that
goes across the deck through the vortex
center. The line is depicted (from above)
in Fig. 11b as the “experimental plane”.
Additional  information on  the
computation is given in Ref. [4].
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Figure 12. Comparison of Experimental
and Computed Velocity Over Deck,
Z=1.0

4. Conclusions

Vorticity Confinement has been
shown to provide an efficient, promising
means of computing the turbulent wake
behind a round and a square cylinder, on
a very coarse mesh. Results were
presented for the mean flow and the rms
fluctuations, and the effects of different
levels of confinement (and no
confinement) were demonstrated. It
appears that the ability to resolve scales
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down to 1~2 grid cells and absorb
energy there suffices to quantitatively
solve for the dynamics of the large scale
eddies in the wake. Also, the method
was shown to allow the emdedding of
the surface in a uniform, coarse
Cartesian grid without body-fitting,
refinement, or complex logic near the
surface.

It can be seen that the Vorticity
Confinement results for the cylinder
wakes, when compared to experiment,
are comparable to conventional LES
results. The difference is that the
confinement solutions employ immersed
boundaries with simple, coarse Cartesian
grids, with only 16 grid cells across the
cylinder diameter, and no complex LES
turbulence pde models. As a result, no
grid generation was required and the
computations were very simple to set up
and fast to run. Based on these results, it
appears that Vorticity Confinement
should be very useful for rapid
engineering solutions for complex flows.
Additional validation is being done for
surface pressures and forces in these
cases (beyond that already done) [3, 9].
Further, the functional dependence of
our single constant, € , on the Reynolds
number is being calibrated by computing
more cases.

Vorticity Confinement was also
applied to a helicopter landing ship. In
this case, the use of confinement was
shown to be necessary, for the grid used,
for the development of a deck vortex.
This vortex is a major feature of ship
flow fields at general wind aspect
angles. The ship solution is of particular
interest because, unlike the cylinder, the
main vortical structures are not shed, but
remain attached to the configuration.
Although a very coarse mesh was able to




reproduce small-scale turbulent structure
quite well with the cylinder, the ship
required a more dense mesh near the
corner of the bow to correctly predict the
vortex generation. Similar results have
been found in other cases. This is due to
the interaction of the confinement terms
with boundary conditions imposed by
solid surfaces. This interaction is a
subject of current research, as many
structures (e.g., buildings) may exhibit
bound vortices, and the ability to model
these structures with coarse grids is of
great importance.

Finally, a new, more elegant,
fully conservative Vorticity
Confinement formulation was presented
with preliminary results with diffusion
but without convection. This will be
used in the future.
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